

Energy Efficiency and Cost Effectiveness of Electrical Heating in Combination with Photovoltaic Systems

— Phase 1 —

Client:	MAGNUM Heating Group B.V.	Stevinweg 8 4691 SM Tholen THE NETHERLANDS
	Danfoss A/S	Ulvehavevej 61 7100 Vejle, Syddanmark DENMARK
	EBECO AB	Lärjeågatan 11 415 02 Göteborg SWEDEN
	FENIX GROUP a.s.	Šárecká 37 16000 Praha 6 CZECH REPUBLIC
	KIMA Heating Cable AB	Dragarevägen 5 / Box 2024 281 02 Hässleholm SWEDEN
	nVent Thermal Belgium NV	Romeinse straat 14 3001 Leuven BELGIUM
	OJ Electronics A/S	Stenager 13 B 6400 Sønderborg DENMARK
Contractor:	ITG Institute for Building Systems Engineering Dresden Research and Application GmbH	Tiergartenstraße 54 01219 Dresden GERMANY
	Authors/Editors: Prof. DrIng. Bert Oschatz DrIng. Bernadetta Winiewska DiplIng. Bettina Mailach DiplIng. (FH) Jens Rosenkranz	

Contents

Conte	ents	3
1 Int	troduction	5
2 Ca	alculation method and input data	6
2.1	General	6
2.2	Exemplarily chosen European countries	6
2.3	Excursion: EN 15316 / DIN V 18599	6
2.4	Shared input data	7
2.4.	1 Model Building	7
2.4.2	2 Building Systems	9
2.4.3	3 Use parameters	9
2.5	Excursion: Electricity demand for household appliances	10
2.6	Final energy demand, weather and PV	11
2.7	Primary energy	12
2.8	Cost balance	13
2.8.	1 General	
2.8.2	2 Energy costs	
2.8.3	3 Investment, maintenance and repair costs	15
3 Re	esults	23
3 Re 3.1	General	23 23
3 Re 3.1 3.2	General	23 23 23
3 Re 3.1 3.2 3.2.	General Genergy balance	23 23 23 23
 3 Re 3.1 3.2 3.2. 3.2. 	General General Energy balance 1 General	23 23 23 23 23
3 Re 3.1 3.2 3.2. 3.2. 3.2.	General Energy balance 1 General 2 Final energy 3 Primary energy	23 23 23 23 23 23 30
 3 Re 3.1 3.2 3.2.3 3.2.3 3.3 	General Energy balance 1 General 2 Final energy 3 Primary energy Energy costs	23 23 23 23 23 30 33
 3 Re 3.1 3.2 3.2.3 3.2.3 3.3 3.4 	General General Energy balance 1 General 2 Final energy 3 Primary energy Energy costs Total annual cost balance	23 23 23 23 30 33 36
 3 Re 3.1 3.2 3.2.3 3.3 3.4 4 Re 	General General Energy balance General Final energy Primary energy Energy costs Total annual cost balance Elevance and impact of direct-electric heating in residential buildings	23 23 23 23 30 30 36 36 43
 3 Re 3.1 3.2 3.2.3 3.2 3.3 3.4 4 Re 4.1 	General General Energy balance General Final energy Final energy Primary energy Energy costs Total annual cost balance Elevance and impact of direct-electric heating in residential buildings Number of suitable dwellings	23 23 23 23 30 30 36 36 43
 3 Re 3.1 3.2 3.2.3 3.3 3.4 4 Re 4.1 4.2 	General Energy balance 1 General 2 Final energy 3 Primary energy Energy costs Total annual cost balance elevance and impact of direct-electric heating in residential buildings Number of suitable dwellings Primary energy demand	23 23 23 23 23 30 30 36 36 43 43 44
 3 Re 3.1 3.2 3.2.3 3.2 3.3 3.4 4 Re 4.1 4.2 4.2.4 	esults	23 23 23 23 23 30 30 33 36 43 43 44 44
 3 Re 3.1 3.2 3.2.3 3.2.3 3.3 3.4 4 Re 4.1 4.2 4.2.4 4.2.4 	esults	23 23 23 23 23 30 30 33 36 43 43 44 44 44
 3 Re 3.1 3.2 3.2.3 3.2.3 3.3 3.4 4 Re 4.1 4.2 4.2.3 4.2.3 	general Energy balance 1 General 2 Final energy 3 Primary energy Energy costs Total annual cost balance elevance and impact of direct-electric heating in residential buildings Number of suitable dwellings Primary energy demand 1 General 2 Excursion: Primary energy and other indicators of environmental impact 3 Aggregated Results	23 23 23 23 23 30 33 36 36 43 43 44 44 44 44
 3 Re 3.1 3.2 3.2.3 3.2.3 3.3 3.4 4 Re 4.1 4.2 4.2.3 4.2.3 Refere 	General General Energy balance 1 General 2 Final energy 3 Primary energy Energy costs Total annual cost balance elevance and impact of direct-electric heating in residential buildings Number of suitable dwellings Primary energy demand 1 General 2 Excursion: Primary energy and other indicators of environmental impact 3 Aggregated Results	23 23 23 23 23 30 33 36 36 43 43 44 44 44 44 44 44 44 44
 3 Re 3.1 3.2 3.2.3 3.2.3 3.3 3.4 4 Re 4.1 4.2 4.2.3 4.2.3 Refer Appen 	General Energy balance 1 General 2 Final energy 3 Primary energy Energy costs Total annual cost balance elevance and impact of direct-electric heating in residential buildings Number of suitable dwellings Primary energy demand 1 General 2 Excursion: Primary energy and other indicators of environmental impact 3 Aggregated Results ences	23 23 23 23 23 30 30 36 43 43 43 44 44 44 45 52 54

Solar insolation	54
Average overall energy demand of the model building	54
Energy balance and energy costs	54
Cost balance	61

1 Introduction

With decreasing energy consumption for the heating of residential buildings by means of increasing thermal insulation and air tightness, grid power becoming greener and photovoltaic systems (PV) becoming cheaper, the combination of electrical heating and PV may become a more viable option from both an economic and an ecologic perspective.

On behalf of the *Bundesverband Flächenehizungen und Flächenkühlungen e. V.* (BVF; Federal Association of Surface Heating and Surface Cooling), ITG has compared several heat generation options (fuel based as well as fully electric) combined with photovoltaic systems in terms of

- energy efficiency,
- cost effectiveness and
- the chosen method of crediting the usable PV output.

The present study converts the abovementioned considerations to exemplarily chosen European countries. This conversion accounts for national conditions regarding weather, primary energy and relevant costs – e. g. adjustment of net/final energy demand and PV output, use of country-specific primary energy factors, energy prices and investment costs. However, country-specific legislation, subsidies / support schemes and such will not be researched.

2 Calculation method and input data

2.1 General

This study compares different building system variants for a single-family building in terms of energy efficiency and cost effectiveness exemplarily for certain European countries. For that, the following country-specific quantities have to be known for each variant:

- Final energy demand and PV gains (basis for primary energy demand and energy costs)
- Primary energy factors
- (Household) Energy prices
- Investment cost of the compared building systems

The method for energy demand calculation used here is based on EN 15316 [1]¹ (see 2.3).

Country-specific data is obtained from the following sources:

- Statistical Office of the European Union (Eurostat)
- National statistical offices
- Joint Research Centre of the European Commission (JRC)
- EUHA members (especially input on energy and investment costs)

2.2 Exemplarily chosen European countries

This study aims at a comparison of different building / building system variants from a European perspective. Results will be shown for the following countries:

- Federal Republic of Germany (Germany/DEU)
- Czech Republic (CZE)
- French Republic (France/FRA)
- The Netherlands (NLD)
- Kingdom of Sweden (Sweden/SWE)

2.3 Excursion: EN 15316 / DIN V 18599

This study uses energy demand values based on EN 15316 / DIN V 18599 [1, 2, 3]¹. These standards describe a method to calculate the yearly energy demand of a building on the basis of

- use parameters (inner temperatures, air change rates, times of use etc. for different use cases, such as residential use, offices, warehouses and so on),
- weather conditions (monthly mean external temperatures, insolation etc.)
- thermal properties and air-tightness of the building envelope and
- type and efficiency of building systems (HVAC).

The method accounts for energy demand regarding

- heating and cooling,
- ventilation and air conditioning,

¹ A commercially available comprehensive software for energy demand calculations based on DIN V 18599 is used – EN 15316 and DIN V 18599 mirror each other for the most part.

- hot water generation and
- lighting (only in non-residential buildings)

both in terms of heat/cold generation and auxiliary energy.

The starting point of any energy demand calculation is the calculation of the required amount of useful energy – for example a certain amount of heat required to heat a portion of a building or a building as whole, which is mainly determined by use parameters, thermal insulation, air tightness and external and internal heat gains. Based on that required amount of useful energy, final and primary energy demand are calculated by adding respective losses for emission systems, distribution and so on – Figure 1 illustrates the calculation flow (left to right vs. energy flow right to left) in a simplified manner.

Figure 1 Direction of energy demand calculations in accordance with EN 15316 / DIN V 18599 vs. direction of energy flow.

The method can be used to predict, among other things,

- generator output (e. g. amount of heat required from the heat generator factoring in all losses between heat emission and heat generation),
- final energy consumption and,
- based on final energy consumption, primary energy consumption, energy costs and pollutant emissions

under average conditions. It is therefore well suited for systematic parameter variations, e. g. comparisons of

- different options of building system for a given purpose (e. g. heat generation via gas boiler vs. heat pump etc.),
- different levels of heat insulation and so forth.

The method is, for the most part, based on monthly energy balances for each month of the year. It delivers both monthly results and results over a whole year.

2.4 Shared input data

2.4.1 Model Building

The calculations model a single-family house (detached, no common walls with other buildings) for two different levels of thermal insulation, both oriented towards the ambitious side of the scale found in new buildings.

The model building has 2 (1,5) storeys and a total living space of about 150 m². The thermal building envelope is made up of the outer walls, the floor slab (no cellar), the lower parts of the gable roof and the topmost ceiling.

Figure 2 Model building, simplified illustration

Table 1 Building properties

Property			Level of thermal insulation ^a		
			High	Very high	
Thermal transmittance, U-value	Walls	W/m²K	0,20	0,13	
	Roof		0,15	0,13	
	Floor slab		0,25	0,20	
	Window		0,90	0,70	
	Door		1,70	1,40	
	Thermal bridges ^b	0,03		,03	
Air tightness, n ₅₀		h⁻¹	1,0		
Geometry	External volume ^c , V _e	m³	554		
	Net floor aread, ANGF	m²	162		
	Living space area, Aw	m²	150		
	A/V _e	m-1	0,74		

Perception of the given numbers as a "very high", "moderate", "high", etc. level of insulation depends on country-specific common building practise, regulation etc. Following input from EUHA members, it can be assumed that the given numbers, while not adjusted to each country's EPBD-related requirements, are, in scale, representative for new residential buildings towards the more energy-efficient end of the spectrum.

^b Added to each building-element U-value

° Volume defined by the thermal building envelope

d Total internal floor area, only excluding walls

2.4.2 Building Systems

The following combinations of building systems will be compared:

Tubic							
No.	b. Room heating		Domestic water heating	PV	Abbreviation		
	Generation	Emission		battery			
1	Gas condensing boiler	Underfloor	Hot water storage tank, sharing	No	Boiler + Hot water tank		
2	Electric air source heat	heating	heat generator with room heating		ASHP + Hot water tank		
3	pump	(35/28 C)	Electric flow water heater	Yes	ASHP + Flow heater + Battery		
4	Electric underfloor heati	ng	Electric heat pump water heatera	No	EUFH + HP water heater		
5			Electric hot water storage tank		EUFH + E hot water tank		
6				Yes	EUFH + E hot water tank + Battery		
7			Electric Flow water heater		EUFH + Flow heater + Battery		

Table 2 Building system variants

^a External air as heat source

All variants are equipped with the same ventilation system and the same photovoltaic modules.

It is assumed that one half of the gable roof is for the most part covered with PV modules. This translates to a module area of roughly 50 m^2 and a peak power of about 9 kW when new.

All variants with a flow water heater (no. 3 and 7) are equipped with a battery; of the two variants with directly heated water tanks (no. 5 and 6) one is equipped with a battery and one is not. The battery capacity is set to 1 kilowatt hour per installed kilowatt of PV-module power (\rightarrow 9 kWh).

	System/Property		Value	
PV-System	Module surface area	m²	49,8	
	Cell type		Monocrystalline Silicon	
	Peak power	kW _{peak}	8,16 average over 25 years ^a (9,06 for new modules)	
	Orientation	—	S	
	Angle (\triangleq roof slope)	0	37	
Ventilation system	Туре		Supply/exhaust with heat recovery	
	Annual operating time		Heating season only ^b	

Table 3 Common building system properties for all variants

^a Overall PV degradation is taken into account in a simplified manner: The supposed peak power of new modules is lowered to 90 % (≙ average over 25 years when assuming a linear degradation from 100 to 80 %).

^b In EN 15316 / DIN V 18599, the length of the calculated heating season depends on the overall heat balance and, as such, also takes into account internal heat gains. Therefore ventilation energy demand (setting: heating season only) is not only affected by thermal insulation, but also by the building system variant (differences in internal recoverable heat losses). Within this study however, the heating season length is set to a fixed value per country on the basis of country-specific degree days and a heating limit temperature representative for modern air-tight and highly insulated buildings (see also 2.4.1, 2.6) – this slight simplification has no significant influence on the overall results, but avoids situations where the energy demand of the ventilations system within one country and one thermal-insulation level could "jump" between different variants.

2.4.3 Use parameters

The following use parameters are assumed:

Table 4 Use parameters		
Operation time heating system h/d		23
Internal temperature °C		20
Minimum air change rate	h-1	0,45
Useful energy demand for water heating	kWh/m²d	8,5

In reality, also "soft factors" like the perceived energy efficiency of a building and its HVAC systems – and thus the expectations of what energy costs their use causes – can influence user behaviour. For example, with increasing energy efficiency, it can often be seen that part of the energy saving potential is not utilised, but instead spent on higher comfort. However for the present study, it is assumed that all variants (thermal insulation and building systems) are operated based on the same use parameters and the same or a very similar level of comfort. This allows a clean comparison between the different variants based on objective/measurable efficiency parameters for a given use case.

2.5 Excursion: Electricity demand for household appliances

In this study, the amount of usable electric energy from the PV system is set off against the building's electricity demand – including electricity required for room and water heating, ventilation and household appliances (white and brown goods).

National habits regarding the use of electricity can vary greatly depending on electric infrastructure, energy prices and so on. Table 5 shows estimated per-household consumption values based on statistical data. However, the source data does not break down the overall consumption into specific uses – e. g. which percentage goes into HVAC or into household appliances.

While Germany, the Czech Republic and the Netherlands show similar per-household consumption values, much higher values are found for France and Sweden.

Country	Overall consump- tion households 2011 [GWh/a]	Dwell- ings 2001	Consumption per dwelling [kWh/a]	Notes
Germany	128.200	37.957.000	3.378	 Low percentage of electrical heating Value close to standard value DIN V 18599:2019
Czech Republic	15.050	4.216.085	3.570	Similar to Germany
France	158.330	23.808.072	6.650	Presumably higher percentage of electrical heating (compared to Germany)
Netherlands	22.971	6.866.302	3.345	Similar to Germany
Sweden	45.068	3.115.399	14.466	 Very high consumption Presumably very high percentage of electrical heating

 Table 5
 Electricity consumption households (Eurostat)

It is assumed that

- usage of electricity for
 - o Germany,
 - the Czech Republic and
 - the Netherlands

is very similar and that electric heating, while being used in these countries, is not predominant in the abovementioned numbers and

• the higher values for France and Sweden are mainly caused by a relative predominance of electric heat generation and not or only to a certain extend by differences in household appliances.

Comparing the per-dwelling electricity consumption values estimated in this subchapter electricity demand values calculated after chapters 2.1, 2.4 and 2.5, the following was found: For France the overall per-dwelling electricity consumption as estimated above lies in the range of hereafter calculated electricity demand values for the electrically heated model

building variants if the demand for household appliances remains at 63 Wh/m²_{NGF}d². For Sweden the estimated per-dwelling consumption from Table 5 seems on the high side when compared to the range of electricity demands that where calculated based on 63 Wh/m²_{NGF}d² – a better fit is seen with specific household electricity demand increased to about 100 Wh/m²_{NGF}.

The following household-appliances demand values are assumed:

Country	Electricity household appliances		
	Specific [Wh/m² _{NGF} d]	Model building A _{NGF} 162 m ² [kWh/a]	
Germany	63	3.733	
Czech Republic	63	3.733	
France	63	3.733	
Netherlands	63	3.733	
Sweden	100	7.110	

 Table 6
 Estimated electricity demand of the model building for households appliances (i. e. without HVAC)

2.6 Final energy demand, weather and PV

Within this study, final energy demand values are based on EN 15316 and, for the sake of readily available comprehensive calculation software, its German counterpart DIN V 18599^{1 (p. 6)}. Where energy demand values have to be translated between different European countries, a simplified approach based on the ratio of degree days between the source and the target country is used:

$= Q_{f,target,a} * \frac{DD_{target,mth}}{DD_{target,a}}$	Equation 1 Energy demand conversion annual \rightarrow monthly
$= Q_{f,source,a} * \frac{DD_{target,a}}{DD_{source,a}}$	Equation 2 Energy demand conver- sion between countries
$(\vartheta_{e,limit} - \vartheta_{e,mth}) * d_{mth}$	Equation 3 Monthly degree days
Final energy demand in the target country	
Final energy demand in the source country	
Degree days of the target country	
Degree days of the source country	
Mean external temperature at which the heating system will switch on/off In case of good thermal insulation, as is assumed here (Table 1), a value around 10	°C can be assumed.
Monthly mean external temperature	
annual / per year	
monthly / for each month of the year	
	$= Q_{f,target,a} * \frac{DD_{target,mth}}{DD_{target,a}}$ $= Q_{f,source,a} * \frac{DD_{target,a}}{DD_{source,a}}$ $(\vartheta_{e,limit} - \vartheta_{e,mth}) * d_{mth}$ Final energy demand in the target country Final energy demand in the source country Degree days of the target country Degree days of the source country Mean external temperature at which the heating system will switch on/off In case of good thermal insulation, as is assumed here (Table 1), a value around 10 Monthly mean external temperature annual / per year monthly / for each month of the year

The usable amount of electricity delivered by the PV system is calculated on the basis of monthly mean solar radiation data and the parameters of the PV system (see Table 3). It is then set off against the building's electricity demand on the basis of Lichtmeß' method [4]³: This approach converts electricity demand values (energy) into mean power values and then integrates these mean powers over the daily time span with significant solar insolation, thus converting them back into energy. Figure 3 illustrates the approach in a simplified manner.

² Standard value DIN V 18599-10

 $^{^{\}scriptscriptstyle 3}$ Both approaches are also used in the 2018 Version of DIN V 18599 [3].

For heat generators, various adjustments are applied to factor in system-specific utilisation of PV output, e. g.:

- Generally lower utilisation for instantaneous/flow-through types of water heaters⁴
- Influence of heat generator / storage tank sizing (compensation for switch-off times)
- Influence of PV-optimised or "smart-grid-ready" control

Figure 3 Portion of building energy demand that could be covered by a PV system; based on Lichtmeß' approach [4]

In this study, the following source material regarding weather and solar radiation is used (see also Appendix: Degree days and Solar insolation):

Country	Source	1		
Germany	German standard value	German standard values for Potsdam ^a		
Czech Republic	Monthly mean values calculated from TMY datab for	Prague	50°05'N 14°25'E	
France		Paris	48°51'N 02°21'E	
Netherlands		Amsterdam	52°22'N 04°54'E	
Sweden		Stockholm	59°20'N 18°03'E	

 Table 7
 Sources weather data

^a Reference TMY (TRY) in accordance with DIN V 18599-10:2018-09 [3]

The source data (Typical meteorological years / TMY) is obtained from the PVGIS project [5] of the Joint Research Centre of the European Commission (JRC) and is not input into the calculation as is, but processed beforehand:

• The hourly mean values for solar insolation onto a horizontal plane from the TMY are aggregated into monthly mean values and translated to factor in roof slope and orientation.

 The hourly mean values of the external temperature are aggregated into monthly mean values and converted into degree days for a heating limit temperature of 10 °C.

2.7 Primary energy

Primary energy demand is calculated from country-specific final energy demand values (see 2.3–2.6) and country-specific primary energy factors. The following primary energy factors are assumed:

⁴ As flow(-through) water heaters heat water almost instantaneous while it flows through them, they require a comparatively large amount of power – models for universal use are typically found in the range between 18 kW and 24 kW. Roof-mounted PV systems, as assumed here, usually peak at a significantly lower amount of power and will deliver even less on average. Therefore, the power requirement of flow water heating can only be covered to a certain percentage by the PV system. With the addition of a battery, this effect will decrease somewhat, but still be there.

Country	Primary energy factor [kWh _{prim} /kWh _{fin,HI}]			
	Natural gas	Electricity (grid power)		
Germany	1,1	1,8		
Czech Republic	1,0	2,6		
France	1,0	2,3ª		
Netherlands	1,0	1,45ª		
Sweden	1,0 ^b	1,6		

Table 8 Primary energy factors

a As of 2021

^b In Sweden, natural gas and district heating have the same primary energy factor (1,0).

Apart from country-specific primary energy factors, national regulation is not taken into account. Primary energy demands shown here can be seen as estimated primary energy consumption values (based on monthly mean values; see also 2.3). However, primary energy demand values calculated for energy performance certificates according to national regulation / EPBD implementation can deviate from these depending on country-specific regulation, calculation method and scope.

In this study, self-used electricity from a PV system is looked at as electricity not drawn. This equals either setting off self-used PV output against demand on the final energy level or, if doing it on the primary energy level instead, using the same primary energy factor as for drawn electricity. Fed-in PV output is looked at as electricity not produced conventionally and is rated the same as grid power. Thus both self-used and fed-in electricity will balance out with the building's demand at the same per-kilowatt-hour value.⁵

2.8 Cost balance

2.8.1 General

In this study, annualised overall costs are based on the approach described in VDI guideline 2067 Part 1 [6] and given for each variant. These total annual costs include the following items:

- Capital costs (annualised investment costs)
- Overall energy costs including HVAC and household appliances
 - Energy drawn from grid (gas, electricity), taking into account both building demand and self-used PV output
 - o Bonus for fed-in electricity based on feed-in tariff
- Maintenance and repair costs

2.8.2 Energy costs

Energy costs are calculated with country-specific energy prices either found in statistical data (Eurostat [7, 8]) or provided by EUHA members. The following prices are assumed:

⁵ Other approaches are possible. For example, PV output could be seen as more beneficial or less beneficial to the grid and therefore rated differently from the grid power mix. There is no common European method or set of rules. To give an actual example, albeit not for PV: In Germany, the electricity output of CHP plants is rated differently than the general electricity mix – this is done on the basis of the argument that CHP mainly substitutes electricity from plants that are less efficient in terms of primary energy.

Country	Consumer energy price [€/kWh _{fin,HI}], including tax etc.										
	Natural	Natural Electricity									
	gas	Dr	awn from grid		PV Fed to grid						
		Tariff	Applied to	Tariff	Balancing method						
Germany	0,0752	General use: 0,3088	Variant 1, HVAC + household	-0,0944	Momentary values (feed in and						
		Heating: 0,2	Variants 2–7, HVAC only		draw count separately)						
Czech Re-	0,0586	General use: 0,1748	Variant 1, HVAC + household	-0,04							
public		Heating: 0,117	Variants 2, 4–6ª, HVAC + household								
France	0,1049	High: 0,1667⋼	Variant 1, HVAC + household	-0,10							
		Low: 0,1195 ^b	Variants 2–7, HVAC only								
Netherlands	0,0921	General use: 0,2250	Variants 1–7, HVAC + household (no low/heating tariff in place)	-0,05	Annual value (only either feed in or draw at the end of the year)						
Sweden	0,087°	Low: 0,128	Variants 1–7, HVAC + household (low tariff applicable to everything, no distinction)	-0,005	Momentary values (feed in and draw count separately)						

Table 9 Consumer energy prices

^a Flow-through water heaters are uncommon in CZE due to electricity base prices depending on the amperage requirement of the building. No costs/prices will be shown for variants with flow water heaters (3, 7).

^b Averaged between numbers from different EUHA members as well as between high/low and day/night pricing schemes

^c Natural gas costs about the same as district heating per kilowatt hour in Sweden.

It is assumed that the abovementioned prices are effective prices per kilowatt that also include base prices if/where in place and significant.⁶

Within one country, there are usually several energy providers delivering the same energy source at different prices and/or price schemes. It is assumed that the abovementioned numbers, provided/checked by EUHA members, represent average energy prices for each country.

The energy demands for both HVAC (see 2.3–2.6) and household appliances are taken into account. The energy demand for household appliances is estimated based on the DIN-V-18599 standard value of 63 Wh/m²_{NGF} and/or country-specific statistic data on per-household energy consumption (see 2.5).

Regarding the different electricity/PV tariff schemes the following should be noted:

- In all countries looked at here, drawn electricity is more expensive than fed-in electricity – that means that per kilowatt hour drawn more has to payed than can be got per kilowatt hour fed in. This price difference can have a certain effect on the way PV systems are sized relative to the buildings' energy demands. However, for a given building and a given PV system, this price difference alone does not, per se, favour actual self-use or feed-in (see following bullet point).
- 2. For a given building (≙ fixed electricity demand) and PV system (≙ fixed PV output),
 - tariff schemes based on actual consumption values (Germany, Czech Republic, France, Sweden) can, depending on draw and feed-in prices, favour either actual self-use or feed-in – usually maximisation of self-use is promoted –, whereas

⁶ Where energy prices were given as separate annual base prices and per-kilowatt-hour prices, fixed base prices have been translated into per-kilowatthour amounts based on averaged consumption numbers (see Appendix: *Average overall energy demand of the model building*) and added to the perkilowatt-hour prices.

Calculation example

Energy price: 100 €/a and 0,10 €/kWh

Average energy demand for that energy source: 7.000 kWh/a

Effective energy price: 0,10 €/kWh + $\frac{100 €/a}{7000 kWh/a}$ =0,1143 €/kWh

• tariff schemes based on the overall annual balance (Netherlands) cannot distinguish in terms of actual self-use/feed-in and, therefore, favour neither.

This means that with the "Dutch approach" based on an annual balance, as far as energy costs are concerned, there is no incentive to use technologies that could increase self-use, like

- PV-optimised control systems/strategies,
- o combinations of electric heating and thermal storage or
- (electrochemical) batteries.

Of course, there could be other measures in place to influence the overall selfuse/feed-in balance, like subsidies, restrictions etc.

2.8.3 Investment, maintenance and repair costs

Within this study, the term *investment costs* refers all building-system-related investment costs, which may differ significantly between the included variants. Table 10 gives a brief overview over the included cost items.

Variant Cost Item	Boiler + Hot water tank	ASHP + Hot water tank	ASHP + Flow heater + Battery	EUFH + HP water heater	EUFH + E hot water tank	EUFH + E hot water tank + Battery	EUFH + Flow heater + Battery
	-	2	с	4	2	9	2
Heat generation for room heating							
Central heat generator (boiler or heat pump)							
Pump Constant		•			-	_	
Control Mounting hardware							
Underfloor heating system							
 Underfloor heating bytem Underfloor heating for 150 m² of floor space Hydronic: Heating tubing and heat distribution inside the building (tubing, insulation, fittings, mounting hardware) Electric: Heating electric heating cable/mat Mounting system Room temperature control Floor screed 		(hydronic) (electric)					
Domestic water heating		_	•		_		•
Heat generator for water heating (central storage tank, flow heater etc.Mounting hardware) (ce	● ntral)	(decen- tral)		(central)		(decen- tral)
Tap / Hot water distribution							
Tubing, insulation, fittings, mounting hardwareCirculation pump in case of central water heating		(depe	ending on ce	entral/decen	tral water h	eating)	
Gas/Electric installation							
 Gas/Electric installation for heat generators etc. inside the building (no grid to building) 	t	(dependi	ng on comp	onents to be	e installed/c	connected)	
Gas connection	_						
Gas connection from grid to building	•			-	_		
Chimney							
Chimney (structure) with flue gas system	•			-	_		
Ventilation system							
 Supply/exhaust ventilation system with heat recovery Ducts, in-/outlets Mounting hardware 			(ident	• ical for al va	riants)		

Table 10 Investment-cost items, summarised overview

Variant Cost Item	Boiler + Hot water tank	ASHP + Hot water tank	ASHP + Flow heater + Battery	EUFH + HP water heater	EUFH + E hot water tank	EUFH + E hot water tank + Battery	EUFH + Flow heater + Battery
	.	2	e	4	5	9	2
PV system							
 Panels for ~50 m² roof space with ~9 kW_{p,new} (8,16 kW_{p,25a}) 				•			
Inverter	(identical for al variants)						
 Installation material and mounting hardware 							
Battery							
 Lithium-based battery with ~9 kWh Installation material and mounting hardware 	_	_	•	-	_		•

Investment costs for HVAC systems can vary greatly between different countries with some major influences being

- national regulations,
- spending capacity and willingness,
- subsidies
- price adjustment to local markets,
- energy prices,
- tradition/habits/biases and so on.

Within this study, prices for the looked-at countries are, as far as possible, based on input from EUHA members that are active in these countries. Where no input is given, investment costs are estimated.

Country	Notes/Details	
Germany	Own calculation	Based on averaged catalogue prices, usual vendor discounts, labour costs, margins and tax
Czech Republic	Fenix	Prices given for some items suggest an average cost level of about 80 % compared to Germany
France	Danfoss, Fenix	Prices given suggest an average cost level of about 110120 % compared to Germany
Netherlands	Magnum	Similar to Germany, but lower costs for PV systems
Sweden	Ebeco	Similar to Germany

Table 11 Sources for investment costs

For investments regarding HVAC components, an interest rate of 3 % and common service life spans are assumed. Costs for repairs are calculated based on standard values given in VDI 2067; regular ongoing costs (inspection, maintenance, insurance) are based on common hourly wages, service and insurance rates.

System/Component	Service	Annual costs as percentage of initial investment costs			
	life [a] ^a	Repair ^b	Maintenance etc. ^c		
Gas condensing boiler	18	1,50 %	2,92 %		
Heat pump	18	1,00 %	1,32 %		
Hydronic underfloor heating	50	1,00 %	0		
Electric underfloor heating	50	2,00 0,50 % ^d	0		
Hot-water storage tank	20	1,00 %	0,63 %		
Flow water heater	15	1,00 %	0		

 Table 12
 Common service life spans and annual costs for repair and maintenance

System/Component	Service	Annual costs as percentage of initial investment costs				
	life [a] ^a	Repair ^b	Maintenance etc.			
Hot-water distribution	30	0,50 %	0			
Electric/Gas installation and connection to grid	50	1,00 %	0			
Chimney	50	1,00 %	1,59 %			
Ventilation system	20	0,60 %	1,67 %			
PV system (optionally with battery)	25	0	0,86 %			

Table 12 Common service life spans and annual costs for repair and maintenance

a Standard values VDI 2067 [6]

 Repairs not covered by regular maintenance, averaged over service life; Standard values VDI 2067 [6]

Regular ongoing costs for inspection/maintenance and insurance;
 Own calculation/research (based on common hourly wages and/or service rates for inspection/maintenance work, insurance etc.), converted into percentages

^d The VDI standard value for the repair costs of electric underfloor heating systems (2 %) seems unrealistically high – it would translate to average annual repair costs of 140...180 €. For this study, the value was changed to 0,5 % (≙ 35...45 €/a).

Figure 4 illustrates the relation between the service life span of a component and its annualised investment costs – the given percentages refer to the initial investment costs of the component.

Figure 4 Annualised investment costs of a component as a function of its service life for different interest rates

Tables 13 to 17 give the investment costs assumed for each country. It is also assumed that these costs have to be paid in full – subsidies (if/where in place) are not researched.

Table 13 Building-system-related investment costs including material, transport, labour and tax; Germany

Variant	1	2	3	4	5	6	7
Heat generation for room heating	Gas condensing boiler	Electric air source	heat pump		<u> </u>		
Central heat generator (boiler or heat		with domestic water heating	without domestic water heating				
pump), pump, control, mounting hardware	ca. 12 kW: 3.600 €	6,2 kW: 10.200 €	5,7 kW: 10.000 €				
		5,3 kW: 9.700 €	4,8 kW: 9.500 €				
Underfloor heating system 150 m ²	Hydr	onic underfloor heating (35/28 °C)			Electric underflo	oor heating	
Underfloor heating tubing/cable/mat, mount-	Underfloor heating tubing, manifold, he	at distribution inside building (tubing, insulat	tion, fittings, mounting hardware)	Electric Und	lerfloor heating syster	m (e. g. heating cal	ole/mat)
control, floor screed		11.300 €			9.000	€	
Domestic water heating	Hot water storage tank, sharing	g heat generator with room heating	Electric flow water heat-	Electric heat pump	Electric hot wat	er storage tank	Electric Flow
	standard tank	heat-pump-specific tank	er	water heater			water heater
	1.600 €	2.900 €	800€	4.200 €	2.20	€ 00	800€
Tap / Hot water distribution	1.300 €	1.300 €	200€	1.300 €	1.30)0 €	200€
Tubing, insulation, fittings, mounting hard- ware, circulation pump in case of central water heating							
Electric/Gas installation heating / hot water	700 €	500 €	550 €		150 €		
Gas connection to grid	2.100€			_			
Chimney	2.900 €			_			
Ventilation system Supply/exhaust ventilation system with heat recovery, ducts, in-/outlets, mounting hardware			9.000€				
PV system ~50 m²; ~9 kW _{p,new}			15.200€				
(8,16 kW _{p,25a}) including mounting hardware, inverter, installation material							
Battery ~9 kWh, lithium-based including mounting and installation material		_	9.300€	-		9.3	00€

Table 14	Building-system-related investment costs including material, tran	nsport, labour and tax; Czech Republic
----------	---	--

	-	1	-		I I	_	· T
Variant	1	2	3	4	5	6	7
Heat generation for room heating	Gas condensing boiler	Electric air source	heat pump				
Central heat generator (boiler or heat		with domestic water heating	without domestic water heating				
pump), pump, control, mounting hardware	ca. 12 kW: 2.500 €	6,2 kW: 8.160 ۻ	5,7 kW: 8.000 ۻ				
		5,3 kW: 7.760 ۻ	4,8 kW: 7.600 ۻ				
Underfloor heating system 150 m ²	Hydr	ronic underfloor heating (35/28 °C)			Electric underflo	or heating	
Underfloor heating tubing/cable/mat, mount-	Underfloor heating tubing, manifold, he	at distribution inside building (tubing, insula	tion, fittings, mounting hardware)	Electric Und	lerfloor heating system	n (e. g. heating cal	ble/mat)
control, floor screed		10.100 €			7.000€	E	
Domestic water heating	Hot water storage tank, sharing	g heat generator with room heating	Electric flow water heat-	Electric heat pump	Electric hot wate	er storage tank	Electric Flow
	standard tank	heat-pump-specific tank	er	water heater			water heater
	1.280 ۻ	2.320 ۻ	<u> </u>	2.600 €	340	€	<u> </u> b
Tap / Hot water distribution Tubing, insulation, fittings, mounting hard-	1.040 ۻ	1.040 ۻ	160 ۻ	1.040 ۻ	1.040) ۻ	160 ۻ
ware, circulation pump in case of central water heating							
Electric/Gas installation heating /	560 ۻ	400 ۻ	440 ۻ		120 ۻ	1	<u>.</u>
hot water							
Gas connection to grid	1.680 ۻ			—			
Chimney	2.320 ۻ			_			
Ventilation system Supply/exhaust ventilation system with heat recovery, ducts, in-/outlets, mounting hardware			7.500€				
PV system ~50 m²; ~9 kW _{p,new}			12.160 ۻ				
(8,16 kW _{p,25a}) including mounting hardware, inverter, installation material							
Battery ~9 kWh, lithium-based		_	7.440 ۻ	_		7.4	40 ۻ
including mounting and installation material							

^a Estimated based on numbers given bei EUHA member

^b Uncommon in CZE due to electricity base prices depending on amperage requirement

Variant	1	2	3	4	5	6	7
Heat generation for room heating	Gas condensing boiler	Electric air source	heat pump				<u> </u>
Central heat generator (boiler or heat	Ŭ	with domestic water heating	without domestic water heating				
pump), pump, control, mounting hardware	ca. 12 kW: 4.250 €	13.200 €	11.700 €				
Underfloor heating system 150 m ² Underfloor heating tubing/cable/mat, mount-	Hydr	ronic underfloor heating (35/28 °C)	tion fittings mounting hardware)	Electric Linc	Electric underflo	or heating	nle/mat)
ing system/hardware, room temperature control, floor screed	ondemoer reading tubing, manifold, ne	11.000 €	aon, nangs, mounting haloware)	Licente one	9.000	€	nonnaty
Domestic water heating	Hot water storage tank, sharing	g heat generator with room heating	Electric flow water heat-	Electric heat pump	Electric hot wate	er storage tank	Electric Flow
	standard tank	heat-pump-specific tank	er	water heater			water heater
	1.920 ۻ	2.850 €	700€	3.200 €	800)€	700€
Tap / Hot water distribution Tubing, insulation, fittings, mounting hard- ware, circulation pump in case of central water heating	650€	650 €	300 €	650€	650)€	300€
Electric/Gas installation heating / hot water	550 €	480 €	480€		250€		
Gas connection to grid	400€			_			
Chimney	0€			_			
Ventilation system Supply/exhaust ventilation system with heat recovery, ducts, in-/outlets, mounting hardware			15.000 €				
PV system ~50 m ² ; ~9 kW _{p,new} (8,16 kW _{p,25a}) including mounting hardware, inverter, installation material			25.000€				
Battery ~9 kWh, lithium-based including mounting and installation material			10.000€	_	-	10.0)00€

Table 15 Building-system-related investment costs including material, transport, labour and tax; France

^a Estimated based on numbers given bei EUHA member

Table 16	Building-system-related investment costs including material, transport, labour and tax; Netherlands
----------	---

Variant	1	2	3	4	5	6	7
Heat generation for room heating	Gas condensing boiler	Electric air source	heat pump		<u> </u>		
Central heat generator (boiler or heat		with domestic water heating	without domestic water heating				
pump), pump, control, mounting hardware		6,2 kW: 10.200 €	5,7 kW: 10.000 €				
	ca. 12 kw: 3.600 €	5,3 kW: 9.700 €	4,8 kW: 9.500 €				
Underfloor heating system 150 m ²	Hydr	onic underfloor heating (35/28 °C)			Electric underflo	or heating	
Underfloor heating tubing/cable/mat, mount-	Underfloor heating tubing, manifold, he	at distribution inside building (tubing, insula	tion, fittings, mounting hardware)	Electric Und	erfloor heating syster	m (e. g. heating cal	ble/mat)
control, floor screed		11.300 €			9.000	€	
Domestic water heating	Hot water storage tank, sharing	g heat generator with room heating	Electric flow water heat-	Electric heat pump	Electric hot wate	er storage tank	Electric Flow
	standard tank	heat-pump-specific tank	er	water heater			water heater
	1.600 €	2.900€	800€	4.200 €	2.20	€ 00	800€
Tap / Hot water distribution Tubing, insulation, fittings, mounting hard- ware, circulation pump in case of central water heating	1.300 €	1.300 €	200€	1.300 €	1.30	00€	200€
Electric/Gas installation heating / hot water	700€	500 €	550 €		150 €		
Gas connection to grid	2.100€			_			
Chimney	2.900€			_			
Ventilation system Supply/exhaust ventilation system with heat recovery, ducts, in-/outlets, mounting hardware			9.000€				
PV system ~50 m ² ; ~9 kW _{p,new} (8,16 kW _{p,25a}) including mounting hardware, inverter, installation material			11.250 €				
Battery ~9 kWh, lithium-based including mounting and installation material		_	9.300€	_		9.3	00€

 Table 17
 Building-system-related investment costs including material, transport, labour and tax; Sweden

Variant	1	2	3	4	5	6	7
Heat generation for room heating	Gas condensing boiler	Electric air source	heat pump		_		<u></u>
Central heat generator (boiler or heat		with domestic water heating	without domestic water heating				
pump), pump, control, mounting hardware	ca. 12 kW: 3.600 €	6,2 kW: 10.200 €	5,7 kW: 10.000 €				
		5,3 kW: 9.700 €	4,8 kW: 9.500 €				
Underfloor heating system 150 m ²	Hydr	onic underfloor heating (35/28 °C)			Electric underflo	or heating	
Underfloor heating tubing/cable/mat, mount-	Underfloor heating tubing, manifold, he	at distribution inside building (tubing, insula	tion, fittings, mounting hardware)	Electric Und	lerfloor heating syster	m (e. g. heating cat	ole/mat)
control, floor screed		11.300 €			9.000 *	€	
Domestic water heating	Hot water storage tank, sharing	g heat generator with room heating	Electric flow water heat-	Electric heat pump	Electric hot wate	er storage tank	Electric Flow
	standard tank	heat-pump-specific tank	er	water heater			water heater
	1.600 €	2.900 €	800€	4.200 €	2.20)0 €	800€
Tap / Hot water distribution	1.300 €	1.300 €	200€	1.300 €	1.30)0 €	200€
Tubing, insulation, fittings, mounting hard- ware, circulation pump in case of central water heating							
Electric/Gas installation heating / hot water	700€	500 €	550 €		150 €		<u>.</u>
Gas connection to grid	2.100 €			_			
Chimney	2.900 €			_			
Ventilation system Supply/exhaust ventilation system with heat recovery, ducts, in-/outlets, mounting hardware			9.000€				
PV system ~50 m ² ; ~9 kW _{p,new} (8,16 kW _{p,25a}) including mounting hardware, inverter, installation material			15.200 €				
Battery ~9 kWh, lithium-based including mounting and installation material		_	9.300€	_		9.3	00€

3 Results

3.1 General

Chapter 3.2 shows the final energy balance and the primary energy demand. Chapters 3.3 and 3.4 show the annual energy and overall cost balance.

All results are based on the calculation method(s) and assumptions / input parameters described in Chapter 2. The tendencies shown here cannot necessarily be applied to significantly deviating scenarios (e. g. significant changes to the size/power of the PV system and/or battery in relation to the building's demand).

3.2 Energy balance

3.2.1 General

The results shown here are based EN 15316 [1] / DIN V 18599 [2, 3].

So far, national regulation concerning energy performance certificates, EPBD implementation and definition of the nearly zero-energy building (NZEB) is not harmonised across Europe (other than all countries technically following the EPBD). Therefore, there is no common approach as to how to balance a building's energy demand, which parts of the energy demand to include (e. g. HVAC only or household appliances as well) and how to set off the building's electricity demand against the output of a PV system. The results shown here can deviate from what would be calculated in the context of energy performance certificates in accordance with national regulation.

3.2.2 Final energy

The following figures show from left to right these results for each variant:

- Final energy demand of the whole building before PV
 - o Gas
 - Electricity: HVAC, household
- Electricity balance including PV system
 - o Momentary values
 - Total PV output: HVAC, household, fed in to grid
 - Drawn electricity: HVAC, household
 - Annual grid-building balance

The electricity balance based on momentary values gives an estimate of actual draw and feed-in as could be measured with either a combination of separate meters or types of two-way meters that show draw and feed-in separately. In contrast, the annual balance only shows the difference between annual draw and annual feed-in – here, the overall result can only be either draw or feed-in; this value gives an estimate of what would be measured with a single-value fourth-and-back type of meter. Which of these two approaches is actually used to determine the annual energy costs, depends on the chosen/available tariff scheme. Within this study, energy costs are based on momentary values except for the Netherlands (where the annual balance is used instead).

Figure 9 Final energy balance, Sweden; results for variant 1 (gas) apply in good approximation to district heating as well

Findings

Among the electrically heated variants, the two variants with heat pumps for room heating (2, 3) show the lowest final energy demands before and after PV gains. While there is a difference on the hot-water side between heat pump and flow heater, it is comparatively small.

For the variants with electric underfloor heating, the final energy demand before PV depends on the hot-water system as follows (from lowest to highest demand):

- Heat-pump water heater (4)
- Flow water heater (7)
- Central hot-water tank (5/6)

When looking at the final energy demand after taking into account PV gains, this order can change:

• Energy (demand) efficiency

Generally, instantaneous water heating without thermal storage and with almost no distribution tubing is more efficient than a hot-water tank with central hot-water distribution before taking into account PV gains. The lower final-energy efficiency of a hot-water tank, when compared against a flow-through heater, is caused by heat losses due to storage and distribution of hot water.

• Utilisation of PV output

As flow water heaters heat water while it flows through them (at the rate the water is drawn from the tap), they require a comparatively large amount of power7 and they require it at the time hot water is drawn – whether the sun is up or not. Additionally, roof-mounted PV systems, as assumed here, usually peak at a significantly lower amount of power and will deliver even less under average weather conditions. Therefore, the power and energy requirement of flow water heating can only be covered to a certain percentage by the PV system. With the addition of a battery, this effect will decrease somewhat, but still be there.

A hot-water tank heats up water much slower with comparatively little power whenever the water temperature drops below a certain threshold and then stores that heat – thus it can utilise PV output much better in terms of both power requirement and time.

These two effects work against each other. Depending on the country-specific PV potential in relation to the electricity demand, either a flow heater or a hot-water tank can be more efficient overall (including PV). Under the conditions assumed here, the flow-heater scenario (variant 7) will require less electricity from the grid than the hot-water-tank scenario without additional battery (variant 5) for Germany, Czech Republic, France and the Netherlands, but slightly more for Sweden. If both the hot-water tank and the flow water heater are equipped with a battery (variant 6 vs. 7), the hot-water tank (6) will draw less electricity from the grid in all 5 countries.

⁷ Models for universal use typically range around 18 kW to 24 kW.

The following figures show from left to right for each variant the total annual primary energy demand:

- HVAC systems after PV; no household appliances
- HVAC systems less the PV output self-used for household appliances
- HVAC systems less the PV output fed in to grid
- HVAC systems less the PV output both self-used for household appliances and fed in to grid

Please note that the shown results do not include household appliances on the demand side. Thus, applying a bonus for PV output self-used in household appliances can lead to a negative primary energy demand.

Figure 10 Primary energy demand, Germany

Figure 12 Primary energy demand, France

Figure 13 Primary energy demand, Netherlands

Findings

A comparison of the variants shows a similar trend to what was found for the final energy demand (3.2.2). However, with primary energy factors for electricity and natural gas being significantly different and also deviating from country to country (electricity), larger deviations between the primary energy demand for the gas-boiler variant and the electric variants can be found:

- For Germany (PEF_{Gas} = 1,1; PEF_{EI} = 1,8), direct electric heating will, on average, cause the same primary energy demand as heating via gas condensing boiler slightly more with less thermal insulation and/or hot-water systems not optimised for PV and slightly less with better thermal insulation and/or better hot-water systems.
- In the Czech republic (PEF_{Gas} = 1,0; PEF_{EI} = 2,6), direct-electric heating causes significantly more primary energy demand than heating with a gas condensing boiler this difference is mainly caused by the high primary energy factor for electricity in the Czech Republic.
- In France (PEF_{Gas} = 1,0; PEF_{El} = 2,3), direct-electric heating causes, on average, the same or slightly more primary energy demand than gas heating, but can become comparable or even better in highly insulated buildings with a hot-water system that is highly efficient or/and optimised for self-use of PV output. France still has a rather high primary energy factor for electricity, but also a relatively high potential for PV.
- In the Netherlands ($PEF_{Gas} = 1,0$; $PEF_{EI} = 1,45$) with the lowest primary energy factor for electricity of all included countries, electric heating will usually cause less or substantially less primary energy demand than gas heating.
- In Sweden (PEF_{Gas} = 1,0; PEF_{EI} = 1,6), direct-electric heating will, on average, cause slightly more primary energy demand than gas heating, but can reach a similar level for highly insulated buildings and PV-optimised hot-water systems. While Sweden already has a very low primary energy factor for electricity, its potential for PV is also comparatively low.

With primary energy factors for electricity being significantly higher than for gas, directelectric heating scales better with the building's heat demand (thermal insulation, air tightness) than gas heating in terms of primary energy.

If bonuses for PV output self-used for household appliances or/and for fed-in PV output are applied, annual primary energy demand is reduced drastically.

3.3 Energy costs

The following figures show the annual energy costs including HVAC systems as well as household appliances. Fed-in PV output is taken into account.

Overall energy costs are determined by energy demand, PV output, energy prices and, where in place, feed-in tariffs.

Energy costs, Czech Republic; Missing columns 3 and 7: Flow water heaters are uncommon in CZE due to electricity base prices depending on the amperage requirement of the building

Figure 19 Energy costs, Sweden; results for variant 1 (gas) apply in good approximation to district heating as well

Findings

- In Germany, direct-electric heating usually causes significantly higher energy costs than gas heating (up to factor 2 in the example calculations).
- In the Czech Republic and the Netherlands, direct-electric heating is, on average, comparable to gas heating sometimes higher/lower depending on thermal insulation and the hot- water system. However, it should be noted that, depending on the absolute cost level, relative differences in energy costs can be quite substantial (up to around factor 1,6 for the Netherlands).
- In France, direct-electric heating causes similar to substantially lower energy costs than gas heating.
- In Sweden, electric heating causes similar energy costs as gas or district⁸ heating.

With electricity usually being significantly more expensive than gas per kilowatt hour, directelectric heating scales better with the building's heat demand (thermal insulation, air tightness) than gas heating in terms of energy costs.

3.4 Total annual cost balance

The following figures show the initial HVAC-related investment costs (see Tables 13 to 17) and the total annual costs as the sum of costs related to operation (maintenance/insurance, repair), invested capital and energy consumption.

⁸ In Sweden, district heating is very common and costs about as much as natural gas per kilowatt hour final energy delivered to the building. In terms of heat / final energy demand, the difference between heating a building either via gas condensing boiler or via connecting to a district heating grid is negligible; therefore, variant 1, while modelling a gas condensing boiler, also approximates district heating very closely.

Cost balance, Germany

Cost balance, Czech Republic; Missing columns 3 and 7: Flow water heaters are uncommon in CZE due to electricity base prices depending on the amperage requirement of the building

Cost balance, the Netherlands

Findings

- In Germany, the variation of annual costs is relatively small in relation to the absolute cost level. Direct-electric heating with PV will cause similar total annual costs as gas heating with PV – slightly higher with only moderately high thermal insulation and visibly lower in case of the higher thermal-insulation level.
- In the Czech Republic, France, the Netherlands and Sweden, direct-electric heating seems to cause lower total annual costs than gas heating as a rule (except for the combination of central hot-water tank and PV battery in the Netherlands⁹). Depending on thermal insulation and hot-water system, the found differences can be substantial.

⁹ In the Netherlands, energy costs are not based on actual electricity draw and feed in, but on an annual feed-in/draw balance where draw and feed-in can cancel each other out. Thus, a battery does not influence the annual energy costs; but it does significantly increase the capital costs.

In terms of total annual costs, direct-electric heating profits more from better thermal insulation than gas heating. But it should be kept in mind, that better thermal insulation will also cause higher costs on the building side – building costs are not included here.

Overall, in highly insulated residential buildings, direct-electric heating in combination with PV systems seems economically interesting, and often even favourable, when compared to gas heating with PV under similar conditions. While gas condensing boilers are an established, well-tried and mature technology, they also have no more substantial potential for efficiency and price optimisations. In contrast, the use of PV systems and electrochemical batteries in the context and scale looked at here is still comparatively new.

Since the introduction of roof-mounted PV systems to a broad market, prices for PV panels have dropped significantly. However, when looking at panel prices over time, a lot of sources will suggest that the price curve is moving towards stagnation. Therefore further price drops in the foreseeable future, while still possible, will most likely be less significant than in the past.

In comparison to that, electrochemical batteries as a means for short-term storage of PV output only just began to penetrate the broader market. While there was a time where the still young market for PV batteries was shared between lead- and lithium-ion-based technologies, today lithium-ion-based technologies dominate by far. This rapid and still ongoing development is mainly driven by electromobility and its huge demand of high-power high-capacity cells and the accompanying technical developments and scale effects. Also, at present it is being hypothesised that old traction batteries, which may become an issue at some point in time, could be reconfigured into and reused as stationary PV batteries in an economically viable way (compared to the production of new cells).

With growing use of volatile renewable energy sources and means of energy storage becoming more and more important, there is also more development going on towards alternative battery technologies more suited for stationary use (e. g. redox-flow systems) – albeit not driven by an economical force comparable to the car industry.

Taking all this into account, it can be assumed that prices for PV batteries may still drop in the foreseeable future.

Also it is expected that electricity from renewable sources will become cheaper in relation to conventional energy sources than it is now (e. g. due to implementation/increase of national carbon taxes).

It should be noted that the given numbers highly depend on the assumptions made. For example, a shortened service life of a component – in comparison to what was planned or initially assumed – would lead to higher capital costs for that component (see also Figure 4). If subsides were in place (e. g. lowered investment costs or lowered interest rate), these would lead to lower capital costs.

4 Relevance and impact of direct-electric heating in residential buildings

4.1 Number of suitable dwellings

The generation of electricity is – depending on the technology used – often associated with high costs and high environmental impact. Also, electricity – being pure exergy – is universally usable high-quality energy. Therefore, "burning" electricity to heat buildings could be seen as a wasteful use of this energy form. On the other hand, with ongoing and growing efforts towards electricity generation from renewable energy sources (grid and decentralised), some voices even envision an energy industry that is based on electricity alone (sometimes referred to as *all-electric world* or *all-electric society*).

Taking into account the increasing portion of renewable energy in the electricity mix as well as buildings becoming more energy efficient and therefore requiring less energy to be heated, electric heating can become more viable both in terms of overall costs and environmental impact. Still, keeping in mind the high value of electricity, direct-electric heating should only be used in highly energy efficient buildings.

Within this study, it is assumed that – for a large part due to national implementations of the EPBD – new residential buildings from around 2016 onwards are suited for direct-electric heating. Figure 25 gives an idea of how many dwellings are built each year in Germany [9], the Czech Republic [10], France [11], the Netherlands [12] and Sweden [13].¹⁰ From 2016 to 2019 about 3,4 million dwellings were built in these countries; it can be assumed that between 700.000 and 900.000 new dwellings are added per year.

Figure 25 Number of new dwellings each year¹⁰

¹⁰ The numbers used here refer to slightly different quantities (dwelling building permits vs. started vs. completed dwellings) because they were available in that form as English publications from each country's statistical office. While using the same quantity (preferably either starts or completions) might provide slightly better comparable numbers, there should be no large deviations; the shown numbers still give a good idea of the scale. Germany: No numbers for 2019 yet; shown value is estimated based on previous years

Sweden: Value for 2019 slightly corrected as suggested by the source material [10]

4.2 Primary energy demand

4.2.1 General

Chapter 3.2.3 showed primary energy demand values for the model building in 2 different thermal-insulation levels and 7 different building-system variants based on current primary energy factors. Within the present chapter, the abovementioned results will be aggregated by main heat generator and subjected to a sensitivity analysis for the Primary energy factor of electricity (4.2.3). This allows a more general consideration of the impact and/or possibilities of direct-electric heating with PV in highly insulated residential buildings now and in the near future – in comparison with gas heating (with PV as well).

This consideration concentrates on primary energy as the major quantity defined by the EPBD – to be used nationally in building performance certificates. Each country following the EPBD should have some type of energy saving legislation for buildings in place that limits the amount of primary energy a new building is allowed to consume per year. But there are also other indicators to describe energy supply chains in terms of environmental impact. For example, greenhouse-gas emissions (most prominently CO₂, which is also used as a reference to normalise other greenhouse gases) and the amount of renewables utilised are often used. Chapter 4.2.2 will give a short excursion on the topic of *primary energy* and its correlations with the abovementioned indicators.

4.2.2 Excursion: Primary energy and other indicators of environmental impact

Primary energy summarises the overall effort or cost that is required to extract/obtain, process and transport/supply a certain amount of final energy – and it does that in terms of energy (see also 2.3/Figure 1). It can be seen as a means to describe the energy efficiency of complex energy supply chains and combinations thereof. With grid power, major influences are the efficiency of electricity generation and distribution. If, for example in Germany, a certain amount of final energy is required in the form of electricity from the grid, this is assumed to add 80 % overhead in terms of overall energy demand – leading to a primary energy demand of 180 % (hence $PEF_{EI} = 1,8$).

The amount of primary energy required to deliver a certain amount of electricity changes over the course of the day (depending on the momentary energy balance between all the different power plants) and also on a more long-term scale (depending on changes of the mix of power plants). Therefore, primary energy factors – as a pure scientific tool to model energy supply chains or combinations thereof (that, in the case of electricity, can change relatively quickly) – are somewhat volatile. At the same time, the quantity *primary energy factor* is used as a means to cap the allowed energy demand of a building in the context of legal regulations – these legally set primary energy factors to be used in building performance certificates can have significant impact on the way a building can or cannot be built. In order to ensure a certain amount of legal certainty, primary energy factors to be used in building performance certificates are often fixed for longer periods and only updated in larger steps. Thus, these legally set primary energy factors can, by their nature, only approximate real(-time) primary energy factors as average values over a certain period of time. Also, in some cases, political decisions to steer the energy mix in a preferred direction can play a certain role.

When doing primary energy balances, usually only energy from non-renewable sources is counted as effort. For example, the abovementioned PEF_{el} of 1,8 includes that a certain portion of the electricity in Germany is produced from renewable sources (> 40 % in 2019). In fact, the primary energy factor for electricity usually correlates fairly well with the utilised amount of energy from renewable sources: A factor of 0 would mean that 100 % of the electricity is produced from renewables, whereas 0 % of renewables would translate to a factor somewhere in the region of 3¹¹. Figure 26 shows the general trend (red thick line) and puts the German primary energy factor as per German Energy Saving Ordinance (EnEV) in that context to provide an example. It should be kept in mind that the factor of 3 for 0 % renewables, albeit commonly accepted,

26 Primary energy factor of electricity as a function of the amount of electricity from renewable sources

is only an approximate number subject to a variety of influences and also the actual correlation for a certain country is not necessarily a perfectly straight line.

While the primary energy factor for electricity correlates well with the amount of renewables used in its generation, things are more complicated when looking at greenhouse-gas emissions. The greenhouse-gas emissions from energy sources used in electricity generation vary greatly. Also, low emissions in an energy source do not always mean low primary energy demand as well – to provide an example, nuclear electricity generation is commonly rated bad in terms of primary energy, but good in terms of greenhouse-gas emissions¹². This means that the correlation between primary energy and greenhouse-gas emissions is much more affected by the specific mix of power plants and energy sources in each country. However, it can be said that with decreasing primary energy factors for electricity generation – in large part driven by increased use of renewables substituting coal, oil and gas –, greenhouse-gas emissions will usually be reduced as well.

4.2.3 Aggregated Results

Among the included countries, present primary energy factors for electricity range from 1,45 (Netherlands 2021) to 2,6 (Czech Republic). While primary energy factors for natural gas, at this point, are not likely to change significantly¹³, recent years show significant changes for electricity in large part due to higher use of renewable energy sources, and this trend will likely continue.

¹¹A primary energy factor of 3 is commonly used for nuclear electricity generation by definition – this may vary on a country-to-country basis. A PEF_{EI} of 3 also translates to an overall efficiency of electricity generation and distribution of 33 % – this resembles a mix of modern and some older fossil power plants and should, therefore, be representative for average conditions.

¹² Depending on the source, numbers of up to about 110 g/kWh (CO₂eq) can be found for Electricity from nuclear power plants. In comparison, natural gas will emit a CO₂ equivalent of about 240 g/kWh_{Heat} – if an efficiency of 40 % for electricity generation and distribution is assumed, this becomes 600 g/kWh_{Electricity}.

¹³ Referring strictly to natural gas (fossil gas), the amount of additional energy put into exploitation, transport and supply is very likely to remain at the present level for the foreseeable future. Therefore, a decrease in primary energy factor is not to be expected. If anything, one could argue that the primary energy factor of 1,0 for natural gas, as used in most countries, usually is a rather optimistic simplification and that, therefore, it should be changed to a slightly higher number.

So far, the term gas as grid-delivered energy source refers to fossil gas. Our understanding of that term may change in the future, once gas from renewable sources (e. g. Biogas, Power-to-gas technologies) will be fed to the gas grid in significant quantities. However, judging from past and present development, a similarly rapid development as was seen and still is seen with electricity from renewable sources seems unlikely, at least for now.

The following figures show the overall primary energy demand of the model building – HVAC after PV without bonuses – as a function of the primary energy factor for electricity, averaged over both insulation levels, for these variants:

- 1) Boiler + Hot water tank: Average new building with gas heating and PV
- Average of variants 2 and 3) ASHP: Average new building with heat pump and PV
- Average of variants 4 to 7) EUFH: Average new building with direct-electric heating and PV

The primary energy demand is shown as absolute number in kilowatt hours per year and as percentage in relation to the gas-heating variant.

It is assumed that self-used PV output substituting grid power has the same worth as the substituted grid power.

Figure 28 Primary energy demand HVAC after PV without bonuses, Czech Republic

Figure 29 Primary energy demand HVAC after PV without bonuses, France

Figure 30 Primary energy demand HVAC after PV without bonuses, Netherlands

Figure 31 Primary energy demand HVAC after PV without bonuses, Sweden

Findings

In the comparison of different HVAC variants of the model building looked at here (see 2.4.1), where all variants have the same PV system, the following can be found regarding the influence of the primary energy factor for electricity:

- In Germany, direct-electric heating is, on average, comparable to gas heating (equality at PEF_{EI} ≈ 1,8).
- In the Czech Republic, direct-electric heating causes significantly more primary energy demand based on the current primary energy factor for electricity it will reach equality at PEF_{El} ≈ 1,6.
- In the Netherlands, assuming a primary energy factor for electricity of 1,45 (2021), direct-electric heating causes on average a lower primary energy demand than gas heating.
- In France, direct-electric heating causes slightly more primary energy demand than gas heating, but will reach equality at PEF_{El} ≈ 2,1.

 In Sweden, direct-electric heating causes slightly more primary energy demand than gas or district heating¹⁴, but will reach equality at PEF_{El} ≈ 1,4.

For the well-insulated model building and taking all 5 countries into account, direct-electric heating in combination with PV would cause more primary energy demand than gas heating with PV right now. However, with ongoing and growing efforts towards electricity production based on renewable energy sources and also extrapolating from the recent past, this is most likely a matter of time only – grid power will become "greener".

In contrast, there is basically no potential to make natural gas as an energy source and condensing boilers as a technology any better in terms of efficiency, primary energy, greenhouse-gas/pollutant emissions¹⁵ than they are now. Of course the existing gas infrastructure could and should be used for less harmful alternatives as well, if/where/when available.

It has to be noted that a comparison such as is done here highly depends on the assumptions made as well as the reference to compare against. For example, primaryenergy-wise, direct-electric heating usually scales better with the building's heat demand (thermal insulation, air tightness) than gas heating; mainly, it profits more from better thermal insulation. Therefore, different results may show for an even better thermal-insulation level than was assumed here. With direct-electric heating (+ PV) often causing lower total annual costs than gas heating (+ PV), part of the saving could potentially be invested in better thermal insulation.

The comparison shown here assumes that the same type of PV system is used in each variant; that is, also in case of gas heating. If instead direct-electric heating with PV was compared against gas heating without PV, direct-electric heating would fare comparatively better (or gas heating comparatively worse) in terms of primary energy than shown here – but this would also change the annual cost balance in favour of gas heating.

¹⁴ In Sweden, district heating is very common and the same primary energy factor is used for natural gas and district heating. In terms of heat / final energy demand, the difference between heating a building either via gas condensing boiler or via connection to a district heating grid is negligible; therefore, variant 1, while modelling a gas condensing boiler, also approximates district heating very closely.

¹⁵While specific primary energy demand and greenhouse-gas emissions of an energy source are different things, there is usually a certain correlation between the two, where, if one gets better or worse, the other often does too (e. g. substantial changes to electricity generation such as replacing older plants by newer more efficient ones or increasing use of almost CO₂-neutral renewables). This means that the relations between different energy sources (natural gas vs. grid power) shown here may not translate one-to-one to emission numbers, but the general trends for each energy source usually do. However, there are exceptions to this – nuclear power, for instance, is commonly rated with a high primary energy factor of around 3, while it produces comparatively little greenhouse-gas emissions. See also 4.2.2

References

- [1] CEN European Commitee for Standardization, *EN* 15316:2017 Energy performance of buildings -- Methods for calculation of system energy requirements and system efficiencies; All parts, 2017.
- [2] DIN Deutsches Institut für Normung e.V., *DIN V 18599:2011-12 Energetische Bewertung von Gebäuden -- Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwasser und Beleuchtung -- Teile 1 bis 11, 2011.*
- [3] DIN Deutsches Institut für Normung e.V., DIN V 18599:2018-09 Energetische Bewertung von Gebäuden -- Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwasser und Beleuchtung -- Teile 1 bis 11, 09/2018.
- [4] Dr.-Ing. Markus Lichtmeß, Goblet Lavandier & Associes, Vereinfachte Bestimmung der Eigenstromnutzung von PV-Anlagen in einer Monatsbilanz für Wohngebäude. Studie mit Unterstützung des Wirtschaftsministeriums Luxemburg [...], Luxemburg, 03/2016.
- [5] JRC PVGIS Photovoltaic Geographical Informations System of the Joint Research Centre of the Eurpean Commission, Location-specific TMY data for the Period 2007-2016, PVGIS 5 interface; Data licenced unter the Creative Commons Attribution 4.0 International (CC BY 4.0) licence (http://creativecommons.org/licenses/by/4.0/), At the time of writing accessible through https://ec.europa.eu/jrc/en/PVGIS/tools/tmy.
- [6] VDI Verein Deutscher Ingenieure, VDI 2067-1:2012-09 Wirtschaftlichkeit gebäudetechnischer Anlagen, Grundlagen der Kostenberechnung / Economic efficiency of building installations, Fundamentals and economic calculation, 09/2012.
- [7] EUROSTAT Statistical Office of the European Union, *Gas prices for household consumers -- bi-annual data (from 2007 onwards) (nrg_pc_202),* At the time of writing accessible through https://ec.europa.eu/eurostat/data/database, 04/2020.
- [8] EUROSTAT Statistical Office of the European Union, *Electricity prices for household consumers -- bi-annual data (from 2007 onwards) (nrg_pc_204)*, At the time of writing accessible through https://ec.europa.eu/eurostat/data/database, 04/2020.
- [9] DESTATIS Statistisches Bundesamt, Bauen und Wohnen; Baugenehmigungen / Baufertigstellungen; Lange Reihen z.T. ab 1949; 2018, 09.07.2019.
- [10 Czech Statistical Office, Residential and non-residential construction and buildings
] permits -- time series; Table 2, At the time of writing accessible through https://www.czso.cz/csu/czso/bvz_ts, 2020.
- Insee National Institute of Statistics and Economic Studies, Number of started dwellings -- Total -- France excluding Mayotte [...] Identifieer 001718154, At the time of writing accessible through https://www.insee.fr/en/statistiques/serie/001718154, 2020.
- [12 CBS Statistics Netherlands, *Trends in the Netherlands 2019*, 2019.

- [13 Statistics Sweden, Building permits for new construction, dwellings in residential buildings and buildings for seasonal and secondary use by region and type of building. Quarterly 1996K1 - 2019K4, At the time of writing accessible through http://www.statistikdatabasen.scb.se/pxweb/en/ssd/START_BO_BO0701/LghHusty pKv/, 2020.
- [14 EnEV 2014: Verordnung über energiesparenden Wärmeschutz und energiesparende
] Anlagentechnik bei Gebäuden (...) vom 27. Juli 2007 (...), zuletzt geändert durch Artikel 1 der Verordnung vom 18. November 2013 (BGBI. I S. 3951).
- [15 EUROSTAT Statistical Office of the European Union, Cooling and heating degree
] days by country -- monthly data (nrg_chdd_m), At the time of writing accessible through https://ec.europa.eu/eurostat/data/database.

Degree days

 Table 18
 Degree days based on monthly mean values for a heating limit temperature of 10 °C, calculated from TMY data [3, 5]

Country	Σ	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Germany Potsdam (German reference TMY)	1.169	279	227	164	24	0	0	0	0	0	16	177	282
Czech Republic Prague: 50°05'N 14°25'E	1.498	313	381	143	24	0	0	0	0	0	68	138	431
France Paris: 48°51'N 02°21'E	703	143	185	102	0	0	0	0	0	0	0	81	192
Netherlands Amsterdam: 52°22'N 04°54'E	882	267	154	124	51	0	0	0	0	0	0	60	226
Sweden Stockholm: 59°20'N 18°03'E	1.909	446	370	310	123	0	0	0	0	0	65	198	397

Solar insolation

In order to determine PV output, solar insolation is converted into the solar radiation intensity onto the south half of the roof.

Country	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Germany Potsdam (German reference TMY)	53	55	122	216	224	233	201	196	158	114	42	27
Czech Republic Prague: 50°05'N 14°25'E	34	99	180	222	156	226	187	189	167	135	62	61
France Paris: 48°51'N 02°21'E	72	92	166	223	210	241	228	210	192	145	57	62
Netherlands Amsterdam: 52°22'N 04°54'E	39	72	167	223	210	216	213	202	153	107	67	50
Sweden Stockholm: 59°20'N 18°03'E	18	54	152	220	224	247	211	186	181	78	43	8

 Table 19
 Mean solar radiation intensity [W/m²], S 37°; calculated from TMY data [5]

Average overall energy demand of the model building

 Table 20
 Average overall energy demand of the model building; includes HVAC and household appliances; no PV gains applied

Country	Average dema	nd [kWh/a]
	Natural Gas (HI)	Electricity
Germany	8.000	9.100
Czech Republic	9.200	10.000
France	6.400	7.800
Netherlands	7.000	8.300
Sweden	10.700	13.300

Energy balance and energy costs

The following tables show from left to right these results:

- Final energy demand of the whole building before PV
 - Use: Building systems (HVAC), household
 - Energy source: Total gas, total electricity

Appendix

- Output of the PV system
 - o **Total**
 - Used in building: HVAC, household
 - Fed in to grid
- Energy balance between grid and building
 - Gas consumption
 - Electricity (balance based on momentary values (actual balance) and annual values¹⁶)
 - Consumption: HVAC, household
 - Fed in to grid
- Energy costs
 - Gas consumption
 - Electricity (either based on momentary values or annual values)
 - Consumption: HVAC, household
 - Fed in to grid
 - Total
- Primary energy demand (based on momentary values)
 - Energy drawn for HVAC after PV: Gas, Electricity
 - Additional PV output: Household, fed in to grid
 - o **Total**
 - HVAC only after PV
 - HVAC with bonuses
 - Self-used PV output
 - Fed-in PV output
 - Both

Some sections of these tables may contain both positive and negative values – the sign refers to the quantity described in the topmost header row (e.g. "Energy costs": Positive values are costs, negative values bonuses).

¹⁶ "Momentary values" refers to the calculation results based on monthly mean values; these give an estimation of what would actually happen under average conditions for standardised use cases. "Annual values" stem from a balance of the aforementioned momentary values over the whole year. In reality, a PV-equipped building will, when monitored over a whole year, almost always both draw electricity from the grid and feed in electricity to the grid. In an annual balance, a PV-equipped building will, when monitored over a whole year, only do either of these (or both could balance out at ±0). An annual balance is only used in the calculation of energy costs the Netherlands.

Table	e 21 Energy balance an	a ene	ergy o	osis	i, Ge	ermai	ny																										
vel	Variant	F	inal	ene	ergy	y de	mand	[kWh	/a]	PV o	utput	t [kW	h/a]	(Grid-b	uildin	g bala	ance	kWh/a	a]	E	inergy	v cost	s [€/a	a]		F	Primar	y energ	y dema	and [kV	/h/a]	
ē			Н	VAC			House-	Σ	Σ	Total	Use	ed in	Fed in	Gas		Ele	ectricity	/ base	l on		Gas	El	ectricit	y	Total	Ene	rgy	Additi	onal PV		Т	otal	
on		He	eat	Au	xiliar	ries	hold	Gas	Elec-	output	buil	ding		drawn	mom	entary	values	anr	ual bala	ance		Dra	wn	Fed		drawn	(HVAC	ou	tput	HVAC	with	with	with
lati		gene	ration						tricity		HVAC	House			Dra	awn	Fed in	Dr	awn	Fed in		HVAC	Hous	in		on	ly)			only	house-	feed-in	household
Insi		Rª	Wa	Rª	Wa	V ^{a,b}						hold			HVAC	House		HVAC	House				ehold			Gas	Elec-	House-	Fed in		hold bonus	bonus	and feed-in bonus
Ц																hold			hold							-	tricity	hold					
	1 Boiler + Hot water tank	4.982	3.810	184	123	342	3.733	8.791	4.382	7.362	166	1.286	5.910	8.791	484	2.447	5.910	0	0	2.980	661	149	756	-558	1.008	9.670	871	-4.404	-10.638	10.541	6.137	-97	-4.501
	2 ASHP + Hot water tank	1.479	1.702	106	43	342	3.733	0	7.406	7.362	1.199	1.286	4.877	0	2.474	2.447	4.877	22	22	0	0	495	756	-460	790	0	4.453	-4.404	-8.778	4.453	49	-4.325	-8.729
	3 ASHP + Flow heater + Battery	1.819	1.651	179	0	342	3.733	0	7.726	7.362	1.235	2.292	3.835	0	2.758	1.441	3.835	188	176	0	0	552	445	-362	634	0	4.964	-2.593	-6.903	4.964	2.371	-1.939	-4.533
Ъ	4 EUFH + HP water heater	5.061	1.493	0	43	342	3.733	0	10.672	7.362	1.369	1.256	4.737	0	5.571	2.477	4.737	2.152	1.158	0	0	1.114	765	-447	1.432	0	10.027	-4.458	-8.527	10.027	5.569	1.500	-2.958
Ξ	5 EUFH + E hot water tank	5.159	3.527	0	37	342	3.733	0	12.797	7.362	2.403	1.239	3.721	0	6.661	2.495	3.721	3.850	1.585	0	0	1.332	770	-351	1.751	0	11.990	-4.490	-6.697	11.990	7.500	5.293	803
	6 EUFH + E hot water tank + Battery	5.159	3.527	0	37	342	3.733	0	12.797	7.362	3.220	1.822	2.320	0	5.845	1.911	2.320	3.850	1.585	0	0	1.169	590	-219	1.540	0	10.520	-3.440	-4.177	10.520	7.080	6.344	2.904
	7 EUFH + Flow heater + Battery	6.071	1.651	0	0	342	3.733	0	11.798	7.362	1.495	1.892	3.975	0	6.570	1.841	3.975	3.032	1.404	0	0	1.314	569	-375	1.507	0	11.826	-3.314	-7.155	11.826	8.512	4.671	1.356
	1 Boiler + Hot water tank	3.465	3.839	176	128	342	3.733	7.303	4.380	7.362	166	1.286	5.910	7.303	481	2.447	5.910	0	0	2.983	549	148	756	-558	895	8.033	865	-4.404	-10.638	8.899	4.495	-1.739	-6.143
	2 ASHP + Hot water tank	1.028	1.699	85	43	342	3.733	0	6.931	7.362	1.086	1.286	4.990	0	2.112	2.447	4.990	0	0	431	0	422	756	-471	707	0	3.801	-4.404	-8.982	3.801	-603	-5.180	-9.584
ء	3 ASHP + Flow heater + Battery	1.335	1.650	158	0	342	3.733	0	7.219	7.362	1.114	2.375	3.873	0	2.372	1.358	3.873	0	0	143	0	474	419	-366	528	0	4.270	-2.444	-6.972	4.270	1.826	-2.701	-5.146
hig	4 EUFH + HP water heater	3.520	1.490	0	43	342	3.733	0	9.129	7.362	1.183	1.276	4.904	0	4.214	2.457	4.904	1.044	723	0	0	843	759	-463	1.139	0	7.584	-4.423	-8.826	7.584	3.162	-1.242	-5.664
/ery	5 EUFH + E hot water tank	3.609	3.522	0	37	342	3.733	0	11.243	7.362	2.244	1.258	3.860	0	5.266	2.475	3.860	2.592	1.288	0	0	1.053	764	-364	1.453	0	9.478	-4.455	-6.949	9.478	5.023	2.530	-1.925
	6 EUFH + E hot water tank + Battery	3.609	3.522	0	37	342	3.733	0	11.243	7.362	3.215	1.928	2.219	0	4.294	1.805	2.219	2.592	1.288	0	0	859	557	-209	1.207	0	7.730	-3.250	-3.995	7.730	4.480	3.735	485
	7 EUFH + Flow heater + Battery	4.453	1.650	0	0	342	3.733	0	10.179	7.362	1.413	2.030	3.920	0	5.033	1.703	3.920	1.784	1.033	0	0	1.007	526	-370	1.163	0	9.060	-3.066	-7.055	9.060	5.994	2.005	-1.061

R: Room heating, W:Water heating, V: Ventilation
 The ventilation system is configured for heating-season-only operation. Therefore, the ventilation energy demand depends on the (calculated) length of the heating season.

Table 22 Energy balance and energy costs, Czech Republic

vel		Variant	F	inal	ene	ergy	/ de	mand	[kWh	/a]	PV o	utput	t [kWl	n/a]	C	Grid-b	uildin	g bala	ance	kWh/a	a]	E	nergy	cost	s [€/	a]		F	Primar	y energ	gy dema	and [kV	/h/a]	
le,				H١	VAC			House	Σ Gas	Σ	Total	Use	ed in	Fed in	Gas		El	ectricity	/ base	d on		Gas	Ele	ectricit	y	Total	Ene	ergy	Additi	onal PV		To	otal	
ion			He	eat	Au	xiliar	ies	hold		Elec-	output	buil	ding		drawn	mom	entary	values	anr	ual bal	ance		Dra	wn	Fed		drawn	(HVAC	ou	tput	HVAC	with	with	with
lat			gene	ration						tricity		HVAC	House			Dra	awn	Fed in	Dr	awn	Fed in		HVAC	Hous	in		on	ly)			only	house-	feed-in	household
nsı			Rª	Wª	Rª	Wa	V ^{a,b}						hold			HVAC	House		HVAC	House				ehold			Gas	Elec-	House-	Fed in		bonus	bonus	bonus
5																	hold			hold								tricity	hold				 	
	1 B	loiler + Hot water tank	6.384	3.810	236	123	342	3.733	10.193	4.434	7.672	202	1.353	6.116	10.193	499	2.380	6.116	0	0	3.237	597	87	416	-245	856	10.193	1.297	-6.187	-15.901	11.490	5.303	-4.411	-10.598
	2 A	SHP + Hot water tank	1.896	1.702	136	43	342	3.733	0	7.852	7.672	1.501	1.353	4.817	0	2.619	2.380	4.817	95	86	0	0	306	278	-193	392	0	6.808	-6.187	-12.525	6.808	621	-5.717	-11.904
	3 A	SHP + Flow heater ^c + Battery	2.331	1.651	230	0	342	3.733	0	8.288	7.672	1.574	2.320	3.778	0	2.981	1.413	3.778	339	278	0						0	7.751	-3.674	-9.822	7.751	4.077	-2.071	-5.745
igh	4 E	UFH + HP water heater	6.485	1.493	0	43	342	3.733	0	12.096	7.672	1.746	1.295	4.631	0	6.617	2.438	4.631	3.059	1.365	0	0	774	285	-185	874	0	17.205	-6.340	-12.040	17.205	10.865	5.164	-1.176
т	5 E	UFH + E hot water tank	6.610	3.527	0	37	342	3.733	0	14.249	7.672	2.805	1.281	3.586	0	7.712	2.452	3.586	4.854	1.723	0	0	902	287	-143	1.046	0	20.050	-6.375	-9.324	20.050	13.675	10.726	4.351
	6 E B	UFH + E hot water tank + Battery	6.610	3.527	0	37	342	3.733	0	14.249	7.672	3.790	1.874	2.007	0	6.726	1.859	2.007	4.854	1.723	0	0	787	217	-80	924	0	17.488	-4.833	-5.219	17.488	12.654	12.268	7.435
	7 E	UFH + Flow heaterc + Battery	7.780	1.651	0	0	342	3.733	0	13.507	7.672	2.045	1.921	3.706	0	7.729	1.812	3.706	4.222	1.613	0						0	20.094	-4.712	-9.636	20.094	15.382	10.458	5.746
	1 B	oiler + Hot water tank	4.440	3.839	225	128	342	3.733	8.278	4.429	7.672	202	1.353	6.116	8.278	494	2.380	6.116	0	0	3.243	485	86	416	-245	743	8.278	1.284	-6.187	-15.902	9.562	3.376	-6.339	-12.526
	2 A	SHP + Hot water tank	1.317	1.699	109	43	342	3.733	0	7.244	7.672	1.317	1.353	5.001	0	2.194	2.380	5.001	0	0	428	0	257	278	-200	335	0	5.703	-6.187	-13.002	5.703	-484	-7.299	-13.486
Ļ	3 A	SHP + Flow heater ^c + Battery	1.711	1.650	203	0	342	3.733	0	7.640	7.672	1.435	2.425	3.812	0	2.472	1.308	3.812	0	0	32						0	6.427	-3.402	-9.912	6.427	3.026	-3.485	-6.887
hig	4 E	UFH + HP water heater	4.511	1.490	0	43	342	3.733	0	10.120	7.672	1.555	1.331	4.786	0	4.832	2.402	4.786	1.545	903	0	0	565	281	-191	655	0	12.563	-6.246	-12.444	12.563	6.317	119	-6.127
/ery	5 E	UFH + E hot water tank	4.624	3.522	0	37	342	3.733	0	12.258	7.672	2.620	1.309	3.743	0	5.905	2.424	3.743	3.190	1.397	0	0	691	284	-150	825	0	15.354	-6.304	-9.732	15.354	9.050	5.621	-682
/	6 E B	UFH + E hot water tank + Battery	4.624	3.522	0	37	342	3.733	0	12.258	7.672	3.700	1.988	1.984	0	4.825	1.745	1.984	3.190	1.397	0	0	565	204	-79	689	0	12.546	-4.538	-5.158	12.546	8.008	7.387	2.850
	7 E	UFH + Flow heater ^c + Battery	5.706	1.650	0	0	342	3.733	0	11.432	7.672	1.844	2.046	3.781	0	5.855	1.687	3.781	2.533	1.228	0						0	15.222	-4.385	-9.830	15.222	10.837	5.392	1.007

^a R: Room heating, W:Water heating, V: Ventilation

b The ventilation system is configured for heating-season-only operation. Therefore, the ventilation energy demand depends on the (calculated) length of the heating season.

c Flow-through water heaters are uncommon in CZE due to electricity base prices depending on the amperage requirement of the building. Therefore, no costs/prices are shown for variants with flow water heaters (3, 6).

Table	e 23 Energy balance an	a ene	ergy (costs	5, г г	ance																											
vel	Variant	F	ina	en	erg	y de	mand	[kWh	n/a]	PV o	utpu	t [kW	h/a]	(Grid-b	uildin	g bala	ince	kWh/a	a]	E	inergy	v cost	s [€/	a]		F	Primar	y energ	y dem	and [kV	Vh/a]	
e			Н	VAC			House-	Σ	Σ	Total	Use	ed in	Fed in	Gas		Ele	ectricity	based	lon		Gas	El	ectricit	у	Total	Ene	rgy	Additi	onal PV		T	otal	
on		He	eat	Au	xilia	ries	hold	Gas	Elec-	output	bui	ding		drawn	mom	entary	/alues	anr	ual bala	ance		Dra	wn	Fed		drawn	(HVAC	ou	tput	HVAC	with	with	with
lati		gene	ration						tricity		HVAC	House			Dra	wn	Fed in	Dr	awn	Fed in		HVAC	Hous	in		on	ly)			only	house-	feed-in	household
ns		Rª	Wa	Rª	Wa	V ^{a,b}						hold			HVAC	House		HVAC	House				ehold			Gas	Elec-	House-	Fed in		honus	bonus	and feed-in
ln																hold			hold								tricity	hold			bonus		bonus
	1 Boiler + Hot water tank	2.996	3.810	111	123	244	3.733	6.806	4.211	8.496	140	1.415	6.941	6.806	338	2.318	6.941	0	0	4.285	714	59	405	-694	484	6.806	777	-5.331	-15.964	7.583	2.252	-8.381	-13.712
	2 ASHP + Hot water tank	890	1.702	64	43	244	3.733	0	6.676	8.496	1.188	1.415	5.892	0	1.755	2.318	5.892	0	0	1.820	0	205	405	-589	21	0	4.036	-5.331	-13.553	4.036	-1.295	-9.517	-14.848
	3 ASHP + Flow heater + Battery	1.094	1.651	108	0	244	3.733	0	6.830	8.496	1.257	2.722	4.516	0	1.840	1.011	4.516	0	0	1.665	0	215	177	-452	-60	0	4.233	-2.324	-10.387	4.233	1.909	-6.154	-8.479
igh	4 EUFH + HP water heater	3.044	1.493	0	43	244	3.733	0	8.557	8.496	1.339	1.415	5.741	0	3.485	2.318	5.741	34	27	0	0	408	405	-574	239	0	8.014	-5.331	-13.205	8.014	2.684	-5.191	-10.522
т	5 EUFH + E hot water tank	3.103	3.527	0	37	244	3.733	0	10.643	8.496	2.565	1.411	4.520	0	4.344	2.322	4.520	1.394	753	0	0	508	406	-452	462	0	9.992	-5.342	-10.395	9.992	4.650	-404	-5.745
	6 EUFH + E hot water tank + Battery	3.103	3.527	0	37	244	3.733	0	10.643	8.496	3.693	2.188	2.615	0	3.217	1.545	2.615	1.394	753	0	0	376	270	-261	385	0	7.399	-3.553	-6.014	7.399	3.847	1.385	-2.167
	7 EUFH + Flow heater + Battery	3.651	1.651	0	0	244	3.733	0	9.280	8.496	1.634	2.341	4.521	0	3.913	1.392	4.521	469	315	0	0	458	243	-452	249	0	9.000	-3.201	-10.398	9.000	5.799	-1.398	-4.600
	1 Boiler + Hot water tank	2.084	3.839	106	128	244	3.733	5.922	4.211	8.496	141	1.415	6.940	5.922	338	2.318	6.940	0	0	4.285	621	59	405	-694	391	5.922	776	-5.331	-15.962	6.699	1.368	-9.263	-14.594
	2 ASHP + Hot water tank	618	1.699	51	43	244	3.733	0	6.389	8.496	1.098	1.415	5.982	0	1.558	2.318	5.982	0	0	2.107	0	182	405	-598	-11	0	3.583	-5.331	-13.760	3.583	-1.748	-10.177	-15.508
٩	3 ASHP + Flow heater + Battery	803	1.650	95	0	244	3.733	0	6.525	8.496	1.110	2.782	4.603	0	1.682	951	4.603	0	0	1.970	0	197	166	-460	-97	0	3.869	-2.188	-10.588	3.869	1.681	-6.719	-8.907
hig	4 EUFH + HP water heater	2.117	1.490	0	43	244	3.733	0	7.628	8.496	1.118	1.415	5.962	0	2.776	2.318	5.962	0	0	868	0	325	405	-596	134	0	6.385	-5.331	-13.713	6.385	1.055	-7.328	-12.658
Very	5 EUFH + E hot water tank	2.170	3.522	0	37	244	3.733	0	9.706	8.496	2.362	1.415	4.719	0	3.611	2.318	4.719	745	465	0	0	422	405	-472	356	0	8.305	-5.331	-10.854	8.305	2.975	-2.548	-7.879
	6 EUFH + E hot water tank + Battery	2.170	3.522	2 0	37	244	3.733	0	9.706	8.496	3.668	2.298	2.529	0	2.305	1.435	2.529	745	465	0	0	270	251	-253	267	0	5.301	-3.299	-5.817	5.301	2.001	-517	-3.816
	7 EUFH + Flow heater + Battery	2.678	1.650	0	0	244	3.733	0	8.306	8.496	1.485	2.478	4.533	0	3.087	1.255	4.533	0	0	190	0	361	219	-453	127	0	7.101	-2.887	-10.425	7.101	4.213	-3.324	-6.212

R: Room heating, W:Water heating, V: Ventilation
 The ventilation system is configured for heating-season-only operation. Therefore, the ventilation energy demand depends on the (calculated) length of the heating season.

Table 24 Energy balance and energy costs, Netherlands

/el	Variant		Fina	al e	ner	gy de	emand	[kWh	/a]	PV o	utput	[kW	h/a]	C	Grid-b	uildin	g bala	ance	kWh/a	a]	E	nergy	cost	s [€/a	a]		F	Primar	y energ	gy dema	and [kV	/h/a]	
le			I	HVA	C		House-	Σ	Σ	Total	Use	ed in	Fed in	Gas	1	Ele	ectricity	/ based	l on		Gas	Ele	ctricit	у ^с	Total	Ene	rgy	Additi	onal PV		Т	otal	
ion		H	leat	1	Auxil	iaries	hold	Gas	Elec-	output	buil	ding		drawn	mom	entary	values	anr	ual bal	ance		Dra	wn	Fed		drawn	(HVAC	ou	tput	HVAC	with	with	with
lat		gene	eratio	n					tricity		HVAC	House			Dra	wn	Fed in	Dr	awn	Fed in		HVAC	Hous	in		on	ly)			only	house-	feed-in	household
nsu		Rª	W	F	Ra M	l ^a V ^{a,b}						hold			HVAC	House		HVAC	House				ehold			Gas	Elec- tricity	House-	Fed in		bonus	Donus	bonus
_	1 Boiler + Hot water tank	3.759	3.81	10 13	39 12	23 292	3.733	7.569	4.287	7.690	157	1.354	6.179	7.569	398	2.379	6.179	0	0	3.403	697	0	0	-170	527	7.569	576	-3.449	-8.960	8.145	4.696	-815	-4.264
	2 ASHP + Hot water tank	1.116	6 1.70)2 8	30 43	3 292	3.733	0	6.967	7.690	1.185	1.354	5.151	0	2.049	2.379	5.151	0	0	723	0	0	0	-36	-36	0	2.970	-3.449	-7.468	2.970	-479	-4.498	-7.947
	3 ASHP + Flow heater + Battery	1.373	3 1.65	51 13	35 C) 292	3.733	0	7.185	7.690	1.277	2.543	3.871	0	2.175	1.190	3.871	0	0	505	0	0	0	-25	-25	0	3.154	-1.726	-5.613	3.154	1.428	-2.458	-4.184
gh	4 EUFH + HP water heater	3.819	9 1.49	93 (0 4	3 292	3.733	0	9.380	7.690	1.380	1.352	4.958	0	4.267	2.381	4.958	1.017	673	0	0	229	151	0	380	0	6.187	-3.452	-7.189	6.187	2.735	-1.002	-4.454
Ξ	5 EUFH + E hot water tank	3.893	3 3.52	27 (0 3	7 292	3.733	0	11.481	7.690	2.522	1.341	3.827	0	5.226	2.392	3.827	2.558	1.233	0	0	576	277	0	853	0	7.578	-3.468	-5.549	7.578	4.110	2.029	-1.440
	6 EUFH + E hot water tank + Battery	3.893	3 3.52	27 (0 3	7 292	3.733	0	11.481	7.690	3.659	2.068	1.963	0	4.089	1.665	1.963	2.558	1.233	0	0	576	277	0	853	0	5.929	-2.414	-2.846	5.929	3.515	3.083	669
	7 EUFH + Flow heater + Battery	4.58	1 1.65	51 (0 0) 292	3.733	0	10.258	7.690	1.722	2.184	3.784	0	4.803	1.549	3.784	1.633	934	0	0	368	210	0	578	0	6.964	-2.246	-5.487	6.964	4.718	1.477	-769
	1 Boiler + Hot water tank	2.614	1 3.83	39 13	33 12	28 292	3.733	6.453	4.286	7.690	157	1.354	6.179	6.453	396	2.379	6.179	0	0	3.404	594	0	0	-170	424	6.453	574	-3.449	-8.959	7.027	3.578	-1.932	-5.381
	2 ASHP + Hot water tank	776	1.69	99 6	64 43	3 292	3.733	0	6.608	7.690	1.088	1.354	5.248	0	1.787	2.379	5.248	0	0	1.083	0	0	0	-54	-54	0	2.591	-3.449	-7.610	2.591	-858	-5.019	-8.468
<u> </u>	3 ASHP + Flow heater + Battery	1.007	7 1.65	50 13	20 C) 292	3.733	0	6.803	7.690	1.144	2.615	3.930	0	1.925	1.118	3.930	0	0	887	0	0	0	-44	-44	0	2.792	-1.620	-5.699	2.792	1.171	-2.907	-4.528
/ hig	4 EUFH + HP water heater	2.656	5 1.49	90 (0 4	3 292	3.733	0	8.215	7.690	1.150	1.354	5.186	0	3.333	2.379	5.186	286	239	0	0	64	54	0	118	0	4.832	-3.449	-7.520	4.832	1.383	-2.688	-6.137
Very	5 EUFH + E hot water tank	2.723	3 3.52	22 (0 3	7 292	3.733	0	10.307	7.690	2.342	1.354	3.995	0	4.232	2.379	3.995	1.669	948	0	0	376	213	0	589	0	6.136	-3.450	-5.792	6.136	2.686	344	-3.106
	6 EUFH + E hot water tank + Battery	2.723	3 3.52	22	0 3	7 292	3.733	0	10.307	7.690	3.618	2.181	1.891	0	2.956	1.552	1.891	1.669	948	0	0	376	213	0	589	0	4.286	-2.250	-2.742	4.286	2.035	1.544	-706
	7 EUFH + Flow heater + Battery	3.360	1.65	50 (0 0	292	3.733	0	9.036	7.690	1.526	2.303	3.861	0	3.777	1.430	3.861	790	556	0	0	178	125	0	303	0	5.476	-2.074	-5.598	5.476	3.402	-122	-2.196

^a R: Room heating, W:Water heating, V: Ventilation

b The ventilation system is configured for heating-season-only operation. Therefore, the ventilation energy demand depends on the (calculated) length of the heating season.

^c Based on annual balance

Tabl	le 25 Energy balance ar	nd ene	ergy c	osts,	Swede	en																										
/el	Variant	F	inal	ene	rgy de	emand	[kWh	/a]	PV o	utput	t [kWł	n/a]	C	Grid-b	uildin	g bala	ance [kWh/a	a]	E	inergy	/ cost	s [€/a	a]		F	Primar	y energ	y dema	and [kV	/h/a]	
le,			H\	VAC		House	Σ Gas	Σ	Total	Use	ed in	Fed in	Gas	1	Ele	ectricity	/ based	l on		Gas	EI	ectricit	у	Total	Ene	rgy	Additi	onal PV		To	otal	
tion		Не	at	Aux	iliaries	hold		Elec-	output	buil	ding		drawn	mom	entary	values	ann	ual bal	ance		Dra	wn	Fed		drawn		ou	tput	HVAC	with	with	with
ulat		gener	ation					tricity		HVAC	House			Dra	awn	Fed in	Dra	awn	Fed in		HVAC	Hous	IN		on	y)			only	hold	bonus	and feed-in
lnsı		Rª	Wª	Rª	W ^a V ^{a,b}						noia			HVAC	House hold		HVAC	House hold				enola			Gas	Elec- tricity	House- hold	Fed in		bonus		bonus
	1 Boiler + Hot water tank	8.137	3.810	300	123 342	5.925	11.946	6.691	7.256	165	1.947	5.144	11.946	601	3.978	5.144	0	0	565	1.039	77	509	-26	1.600	11.946	962	-6.365	-8.231	12.909	6.544	4.678	-1.687
	2 ASHP + Hot water tank	2.416	1.702	173	43 342	5.925	0	10.603	7.256	1.282	1.947	4.027	0	3.395	3.978	4.027	1.476	1.870	0	0	435	509	-20	924	0	5.432	-6.365	-6.442	5.432	-933	-1.011	-7.376
	3 ASHP + Flow heater + Battery	2.972	1.651	293	0 342	5.925	0	11.184	7.256	1.318	3.086	2.853	0	3.941	2.840	2.853	1.847	2.081	0	0	504	363	-14	854	0	6.305	-4.544	-4.565	6.305	1.761	1.740	-2.803
gh	4 EUFH + HP water heater	8.266	1.493	0	43 342	5.925	0	16.070	7.256	1.603	1.892	3.761	0	8.541	4.033	3.761	5.564	3.250	0	0	1.093	516	-19	1.591	0	13.666	-6.453	-6.017	13.666	7.213	7.649	1.196
Ξ	5 EUFH + E hot water tank	8.426	3.527	0	37 342	5.925	0	18.257	7.256	2.568	1.865	2.823	0	9.763	4.061	2.823	7.430	3.570	0	0	1.250	520	-14	1.755	0	15.621	-6.497	-4.517	15.621	9.124	11.104	4.607
	6 EUFH + E hot water tank + Battery	8.426	3.527	0	37 342	5.925	0	18.257	7.256	3.269	2.569	1.418	0	9.062	3.356	1.418	7.430	3.570	0	0	1.160	430	-7	1.582	0	14.500	-5.370	-2.269	14.500	9.130	12.231	6.862
	7 EUFH + Flow heater + Battery	9.916	1.651	0	0 342	5.925	0	17.836	7.256	1.773	2.617	2.867	0	10.137	3.309	2.867	7.065	3.515	0	0	1.298	424	-14	1.707	0	16.220	-5.294	-4.587	16.220	10.926	11.633	6.339
	1 Boiler + Hot water tank	5.659	3.839	287	128 342	5.925	9.497	6.683	7.256	164	1.947	5.145	9.497	594	3.978	5.145	0	0	573	826	76	509	-26	1.386	9.497	950	-6.365	-8.232	10.448	4.083	2.216	-4.149
	2 ASHP + Hot water tank	1.679	1.699	138	43 342	5.925	0	9.828	7.256	1.125	1.947	4.184	0	2.777	3.978	4.184	1.021	1.550	0	0	355	509	-21	844	0	4.443	-6.365	-6.694	4.443	-1.922	-2.250	-8.615
Ļ	3 ASHP + Flow heater + Battery	2.180	1.650	259	0 342	5.925	0	10.358	7.256	1.181	3.209	2.866	0	3.251	2.716	2.866	1.327	1.774	0	0	416	348	-14	750	0	5.202	-4.346	-4.586	5.202	856	616	-3.730
hig	4 EUFH + HP water heater	5.749	1.490	0	43 342	5.925	0	13.551	7.256	1.365	1.929	3.962	0	6.260	3.996	3.962	3.542	2.752	0	0	801	511	-20	1.293	0	10.017	-6.394	-6.339	10.017	3.623	3.678	-2.716
/ery	5 EUFH + E hot water tank	5.894	3.522	0	37 342	5.925	0	15.721	7.256	2.395	1.911	2.951	0	7.400	4.015	2.951	5.274	3.190	0	0	947	514	-15	1.446	0	11.840	-6.424	-4.721	11.840	5.416	7.119	695
	6 EUFH + E hot water tank + Battery	5.894	3.522	0	37 342	5.925	0	15.721	7.256	3.172	2.715	1.369	0	6.623	3.210	1.369	5.274	3.190	0	0	848	411	-7	1.252	0	10.597	-5.136	-2.191	10.597	5.461	8.407	3.270
	7 EUFH + Flow heater + Battery	7.273	1.650	0	0 342	5.925	0	15.192	7.256	1.582	2.764	2.910	0	7.684	3.161	2.910	4.840	3.095	0	0	984	405	-15	1.374	0	12.294	-5.058	-4.656	12.294	7.236	7.639	2.581

^a R: Room heating, W:Water heating, V: Ventilation

b The ventilation system is configured for heating-season-only operation. Therefore, the ventilation energy demand depends on the (calculated) length of the heating season.

Cost balance

The following tables show from left to right these results:

- HVAC-related investment costs (see 2.8.3) •
- Capital costs per year based on 3 % interest rate and common service life spans •
- Energy cost per year based on the annual grid-building balance for the Netherlands and on momentary values for all other countries
- Operating costs per year •
 - Regular inspections and maintenance, insurance 0
 - Repairs not covered by regular maintenance (averaged over service life) 0
- Total annual costs •

		oost balance, bernhany						
Thermal		Variant	Investment			Annual costs		
insulation			costs	Capital	Energy	Maintenance etc.	Repair	Total
High	1	Boiler + Hot water tank	47.700€	2.574 €/a	1.008 €/a	456 €/a	301 €/a	4.339 €/a
	2	ASHP + Hot water tank	50.400€	2.939 €/a	790 €/a	415 €/a	310 €/a	4.454 €/a
	3	ASHP + Flow heater + Battery	56.350 €	3.277 €/a	634 €/a	405 €/a	282 €/a	4.598 €/a
	4	EUFH + HP water heater	38.850€	2.205 €/a	1.432 €/a	315 €/a	149 €/a	4.101 €/a
	5	EUFH + E hot water tank	36.850 €	2.048 €/a	1.751 €/a	290 €/a	129 €/a	4.218 €/a
	6	EUFH + E hot water tank + Battery	46.150 €	2.582 €/a	1.540 €/a	290 €/a	129 €/a	4.541 €/a
	7	EUFH + Flow heater + Battery	43.650 €	2.445 €/a	1.507 €/a	280 €/a	110 €/a	4.342 €/a
Very	1	Boiler + Hot water tank	47.700€	2.574 €/a	895 €/a	456 €/a	301 €/a	4.226 €/a
high	2	ASHP + Hot water tank	49.900€	2.903 €/a	707 €/a	415 €/a	305 €/a	4.329 €/a
	3	ASHP + Flow heater + Battery	55.850€	3.240 €/a	528 €/a	405 €/a	277 €/a	4.450 €/a
	4	EUFH + HP water heater	38.850€	2.205 €/a	1.139 €/a	315 €/a	149 €/a	3.808 €/a
	5	EUFH + E hot water tank	36.850€	2.048 €/a	1.453 €/a	290 €/a	129 €/a	3.920 €/a
	6	EUFH + E hot water tank + Battery	46.150 €	2.582 €/a	1.207 €/a	290 €/a	129 €/a	4.208 €/a
	7	EUFH + Flow heater + Battery	43.650€	2.445 €/a	1.163 €/a	280 €/a	110 €/a	3.997 €/a

Table 26	Cost balance, Germany

Thermal		Variant	Investment			Annual costs		
tion			costs	Capital	Energy	Maintenance etc.	Repair	Total
High	1	Boiler + Hot water tank	39.140€	2.093 €/a	856 €/a	359 €/a	247 €/a	3.555 €/a
	2	ASHP + Hot water tank	41.680€	2.413 €/a	392 €/a	337 €/a	260 €/a	3.402 €/a
	3	ASHP + Flow heater ^a + Battery						
	4	EUFH + HP water heater	30.420€	1.721 €/a	874 €/a	251 €/a	112 €/a	2.959 €/a
	5	EUFH + E hot water tank	28.160€	1.555 €/a	1.046 €/a	231 €/a	90 €/a	2.921 €/a
	6	EUFH + E hot water tank + Battery	35.600€	1.982 €/a	924 €/a	231 €/a	90 €/a	3.227 €/a
	7	EUFH + Flow heater ^a + Battery						
Very	1	Boiler + Hot water tank	39.140 €	2.093 €/a	743 €/a	359 €/a	247 €/a	3.442 €/a
high	2	ASHP + Hot water tank	41.280€	2.384 €/a	335 €/a	337 €/a	256 €/a	3.312 €/a
	3	ASHP + Flow heater ^a + Battery						
	4	EUFH + HP water heater	30.420€	1.721 €/a	655 €/a	251 €/a	112 €/a	2.739 €/a
	5	EUFH + E hot water tank	28.160€	1.555 €/a	825 €/a	231 €/a	90 €/a	2.700 €/a
	6	EUFH + E hot water tank + Battery	35.600€	1.982 €/a	689 €/a	231 €/a	90 €/a	2.992 €/a
	7	EUFH + Flow heater ^a + Battery						

Table 27 Cost balance, Czech Republic

a Flow-through water heaters are uncommon in CZE due to electricity base prices depending on the amperage requirement of the building. Therefore, no costs/prices are shown for variants with flow water heaters (3, 6).

Table 28		Cost balance, France							
Thermal insulation		Variant	Investment costs	Annual costs					
				Capital	Energy	Maintenance etc.	Repair	Total	
High	1	Boiler + Hot water tank	45.270 €	2.472 €/a	484 €/a	378 €/a	215 €/a	3.549 €/a	
	2	ASHP + Hot water tank	54.680€	3.167 €/a	21 €/a	410 €/a	288 €/a	3.886 €/a	
	3	ASHP + Flow heater + Battery	60.680€	3.482 €/a	-60 €/a	385 €/a	249 €/a	4.056 €/a	
	4	EUFH + HP water heater	39.600€	2.162 €/a	239 €/a	265 €/a	92 €/a	2.758 €/a	
	5	EUFH + E hot water tank	37.200€	1.983 €/a	462 €/a	242 €/a	68 €/a	2.755 €/a	
	6	EUFH + E hot water tank + Battery	47.200€	2.557 €/a	385 €/a	242 €/a	68 €/a	3.252 €/a	
	7	EUFH + Flow heater + Battery	46.750 €	2.544 €/a	249 €/a	239 €/a	65 €/a	3.097 €/a	
Very high	1	Boiler + Hot water tank	45.270 €	2.472 €/a	391 €/a	378 €/a	215 €/a	3.456 €/a	
	2	ASHP + Hot water tank	54.680€	3.167 €/a	-11 €/a	419 €/a	288 €/a	3.863 €/a	
	3	ASHP + Flow heater + Battery	60.680€	3.482 €/a	-97 €/a	393 €/a	249 €/a	4.026 €/a	
	4	EUFH + HP water heater	39.600€	2.162 €/a	134 €/a	265 €/a	92 €/a	2.653 €/a	
	5	EUFH + E hot water tank	37.200€	1.983 €/a	356 €/a	242 €/a	68 €/a	2.649 €/a	
	6	EUFH + E hot water tank + Battery	47.200€	2.557 €/a	267 €/a	242 €/a	68 €/a	3.135 €/a	
	7	EUFH + Flow heater + Battery	46.750€	2.544 €/a	127 €/a	239 €/a	65 €/a	2.975 €/a	

Table 28 Cost balance. France

Thermal	Variant		Investment	Annual costs					
Insulation			costs	Capital	Energy	Maintenance etc.	Repair	Total	
High	1	Boiler + Hot water tank	43.750 €	2.347 €/a	527 €/a	422 €/a	301 €/a	3.597 €/a	
	2	ASHP + Hot water tank	46.450 €	2.712 €/a	-36 €/a	381 €/a	310 €/a	3.367 €/a	
	3	ASHP + Flow heater + Battery	52.400€	3.050 €/a	-25 €/a	371 €/a	282 €/a	3.677 €/a	
	4	EUFH + HP water heater	34.900€	1.978 €/a	380 €/a	281 €/a	149 €/a	2.789 €/a	
	5	EUFH + E hot water tank	32.900€	1.821 €/a	853 €/a	256 €/a	129 €/a	3.059 €/a	
	6	EUFH + E hot water tank + Battery	42.200€	2.355 €/a	853 €/a	256 €/a	129 €/a	3.593 €/a	
	7	EUFH + Flow heater + Battery	39.700€	2.218 €/a	578 €/a	246 €/a	110 €/a	3.151 €/a	
Very high	1	Boiler + Hot water tank	43.750€	2.347 €/a	424 €/a	422 €/a	301 €/a	3.494 €/a	
	2	ASHP + Hot water tank	45.950 €	2.676 €/a	-54 €/a	381 €/a	305 €/a	3.308 €/a	
	3	ASHP + Flow heater + Battery	51.900€	3.014 €/a	-44 €/a	371 €/a	277 €/a	3.617 €/a	
	4	EUFH + HP water heater	34.900€	1.978 €/a	118 €/a	281 €/a	149 €/a	2.527 €/a	
	5	EUFH + E hot water tank	32.900€	1.821 €/a	589 €/a	256 €/a	129 €/a	2.795 €/a	
	6	EUFH + E hot water tank + Battery	42.200€	2.355 €/a	589 €/a	256 €/a	129 €/a	3.329 €/a	
	7	EUFH + Flow heater + Battery	39.700€	2.218 €/a	303 €/a	246 €/a	110 €/a	2.876 €/a	

Table 29 Cost balance, Netherlands

Table 30		Cost balance, Sweden							
Thermal		Variant	Investment	Annual costs					
insulation			costs	Capital	Energy	Maintenance etc.	Repair	Total	
High	1	Boiler + Hot water tank	47.700€	2.574 €/a	1.600 €/a	456 €/a	301 €/a	4.930 €/a	
	2	ASHP + Hot water tank	50.400€	2.939 €/a	924 €/a	415 €/a	310 €/a	4.587 €/a	
	3	ASHP + Flow heater + Battery	56.350€	3.277 €/a	854 €/a	405 €/a	282 €/a	4.817 €/a	
	4	EUFH + HP water heater	38.850€	2.205 €/a	1.591 €/a	315 €/a	149 €/a	4.260 €/a	
	5	EUFH + E hot water tank	36.850€	2.048 €/a	1.755 €/a	290 €/a	129 €/a	4.222 €/a	
	6	EUFH + E hot water tank + Battery	46.150 €	2.582 €/a	1.582 €/a	290 €/a	129 €/a	4.583 €/a	
	7	EUFH + Flow heater + Battery	43.650 €	2.445 €/a	1.707 €/a	280 €/a	110 €/a	4.541 €/a	
Very	1	Boiler + Hot water tank	47.700€	2.574 €/a	1.386 €/a	456 €/a	301 €/a	4.716 €/a	
high	2	ASHP + Hot water tank	49.900€	2.903 €/a	844 €/a	415 €/a	305 €/a	4.466 €/a	
	3	ASHP + Flow heater + Battery	55.850€	3.240 €/a	750 €/a	405 €/a	277 €/a	4.671 €/a	
	4	EUFH + HP water heater	38.850€	2.205 €/a	1.293 €/a	315 €/a	149 €/a	3.962 €/a	
	5	EUFH + E hot water tank	36.850€	2.048 €/a	1.446 €/a	290 €/a	129 €/a	3.913 €/a	
	6	EUFH + E hot water tank + Battery	46.150€	2.582 €/a	1.252 €/a	290 €/a	129 €/a	4.253 €/a	
	7	EUFH + Flow heater + Battery	43.650€	2.445 €/a	1.374 €/a	280 €/a	110 €/a	4.208 €/a	